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Chapter I

INTRODUCTION

A, Previous Contributions

Three centuries ago, the mathematical basis of modern celestial
mechanics was established by Newton who developed the calculus and ex-~
pounded his laws of motion and gravitation. Kepler's laws of planetary
motion, obtained from observations of the solar system, validated Newton's
law of gravity. For this purpose, Newton utilized a model compatible
with the instrument accuracy of that time. To describe the motion of a
planet, he used this same model, in which the sun was taken as a fixed
body attracting the planet by a force of attraction directly proportion-
al to the product of the masses of the sun and the planet and inverse-
ly proportional to the square of the instantaneous distance between
them.

Subsequently, more sophisticated models, which include perturbations
of the other planets in the solar system, have been developed to verify
the more precise measurements obtained by advanced instruments. Applica-
tion of the Newtonian law of gravity to these models requires use of an
"inertial" frame of reference (i.e., a frame fixed relative to the stars).
In most cases, however, it is convenient to describe the motion relative
to a "rotating' frame. For this purpose, the Coriolis law can be used to
transform the obtained equations of motion to the desired rotating frame.
This transformation gives rise to the so-called "Coriolis" and "centripetal"
accelerations.

In 1772, Lagrange discovered five exact solutions to the problem of
three bodies; an important specialization of which is the restricted prob-
lem of three bodies. In this particular case, one of the masses is so
small that it does not affect the motion of the two larger masses.

In a rotating coordinate system, when the two primaries move in
circles around 'their barycenter, the five Lagrange solutions become five
fixed points, with the configuration as shown in Fig. 1. A particle with
zero relative velocity placed at any one of these five fixed points will

be in equilibrium because the gravitational and centripetal acceleration
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Fig. 1. LIBRATION POINTS IN THE RESTRICTED
PROBLEM OF THREE BODIES.

acting on the particle will cancel out. The existence of periodic orbits
about these points led researchers to refer to them as libration points.

Linearization of the equations of motion around each of the libra-
tion points suggests that the triangular points L4 and L5 are stable
as long as the motion of the two primaries is circular and the mass ratio
p  of the smaller primary to the sum of the masses of the two primaries
is such that p(l-p) < 1/27. On the other hand, the collinear points
are unstable for all mass ratios.

Studies of the stability of infinitesimal motions about the triangu-
lar points in the elliptic restricted problem of three bodies were made
numerically by Danby [11, analytically by Bennett [2, 3], Alfriend and
Rand [4], and recently by Nayfeh and Kamel [5]. 1In the last study,
fourth-order analytical expressions for the transition curves that sepa-
rate stable from unstable orbits in the p-e plane are given in forms of
power series in e (e 1is the eccentricity of the primaries orbit). The

equation of one of the branches originating at pu = 0.028591~ is

2 3 4 B)
p(l) = 0.02859 - 0.05641le + 0.01504e” + 0.02257e¢” - 0.01278e + O0(e )
a.1)

TAt this value, the zeroth-order equations admit a periodic solution
of period 4r.



The equation of the second branch is

2) 1
u( ) _ u( ) (~e) 1.2)
and the equation of the transition curve originating at p = 0.03852 [such

that p(l-p) < 1/27] is

u(3) = 0.03852 - 0.08025e2 + 0(e3) (1.3)

The power series (1.1) was recast into a rational fraction that extended
its validity to larger values of e. This fraction was a cubic divided

by a linear term

2 3
1) _ 1 ~ 1.428e - 0.55¢° + 1.076e
wo o = 0.02859 1 - 0.545e

(1.4)

which is indistinguishable from the numerical curve up to e = 0.8, as
seen in Fig. 2. 1In this figure, a comparison between numerical and the
second~order, fourth-order, and fractional approximations is shown. A
point whose coordinates are y = 1/82.3 ~ 0.012 and e = 0.055 corre-
sponds to the earth-moon system and belongs to the stable region.

In 1958, Klemperer and Benedikt [6] initiated the study of the
earth-moon libration points. 1In 1961 and 1962, Kordylewski [7] reported
observations of "clouds" near L, and L, which evoked interest and
much investigation. An exhaustive list of references can be found in
the recent treatise by Szebehely [8]. Placing satellites at earth-moon
triangular libration points was recommended by a Summer Study Group [9]
and more recently by Farquhar [10]. In both studies, some of the uses
of such satellites and the advantages of their locations are outlined.

This research is a continuation of the analytic study of motion
near the earth-moon equilateral points in the presence of the sun, using
Hamiltonian techniques initiated by Breakwell and Pringle [11] and ex~-
tended by Schechter [12].

Breakwell and Pringle used the von Zeipel perturbation method in a

coplanar second-order analysis of the motion of a particle in the
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neighborhood of the earth-moon triangular libration points. They
elaborated on the effect of near resonances caused by the faster natural
frequency of the linearized analysis being approximately three times the
slower one and by the solar twice-monthly perturbation frequency being
almost twice the faster natural frequency.

After comparing with Deprit, Henrard, and Rom [13], Breakwell recognized
(see Ref. 12) that the long-period part of the second-order Hamiltonian,
derived in mixed variables utilizing the von Zeipel generating function,
was misleading and that it was possible to obtain a different representa-
tion in terms of new variables only. Using this suggestion, Schechter
[12] developed a more valid second-order expression and extended the
analysis to the three-dimensional problem. The following major and in-

teresting conclusions emerged from his study.

(1) As a result of ponlinear resonance, small coplanar motions near
L4 or L5 will grow large because of parametric excitation
by the sun; in fact, the growth of energy in the faster mode
of the linearized theory was found to be governed by a Mathieu
equation.

(2) The out-of-plane motion is not seriously excited by the sun and
has a negligible effect on the coplanar motion,

(3) A one-lunar-month stable periodic coplanar orbit can exist in
the presence of the sun. It consists of a retrograde ellipti-
cal motion around Lj, corresponds to the faster normal mode,
and has a semimajor axis of approximately 60,000 mi. The ex-
ternal nonlinear excitation causes the mean angular motion of
the particle to become synchronized with that of the sun; as a
result, their angular positions coincide closely whenever the
particle crosses one of the axes of the ellipse.

(4) A three-lunar-month unstable periodic orbit, somewhat larger
than the stable one, exists.

Recently, Kolenkiewicz and Carpenter [14] obtained a seminumerical
solution to confirm Schechter's third conclusion but with a semimajor axis
of 90,000 mi rather than 60,000 mi, as found by Schechter. In addition,
they discovered a second similar orbit having a phase difference of 180°

and a semimajor axis of about 88,000 mi.



Because of the discrepancy between the results obtained by Schechter
and Kolenkiewicz and Carpenter, it is concluded that a higher order anal-

ysis is desired.

B. Contribution of This Research

The purpose of this research is to extend Schechter's analysis to
the fourth order; however, two major difficulties arise. The first is
the need of a new perturbation theory to carry out systematically the
higher order approximation. The second is the formidable algebra in the
problem.

These difficulties were overcome by using two recent discoveries.
The first is Deprit's perturbation theory based on Lie transforms [15]
for which a simplified version is obtained in Chapter III (see also Ref.
16), and the second is the ability to carry out the enormous algebraic
manipulations on the computer [17, 18]. It was possible to perform the
algebraic analysis of this research on the Stanford IBM/360 computer,
using the REDUCE language [17]. The results agreed closely with those
of Kolenkiewicz and Carpenter [14].

An attempt was made to study the effect of lunar eccentricity on
the obtained stable orbits. This eccentricity was carried out in the
analysis up to third order rather than fourth order (because of limita-
tions on computer storage), and its effect on the size of the orbits was

found to be small; the orbits become quasi-periodic rather than periodic.



Chapter II

HAMILTONIAN AND NONLINEAR MECHANICS

This chapter will acquaint the unfamiliar reader with the basic
materials needed to understand the main contribution of this research.
These basic materials, and more, can be found in the literature [Refs.
19-241.

For a nonlinear oscillatory dynamical system in which all perturb-
ing forces are derivable from a potential, the equations of motion take
a very special form. This form is elegantly expressed by Hamiltom's
canonical equations generated by a scalar function called the Hamiltonian.

In this chapter, the Hamilton canonical equations are derived from
the Lagrange equations. In Section B, these same equations again are
derived directly from Hamilton's principle. The behavior of the Hamil-
tonian under the transformation of variables is also described. Outlined
in the concluding section is the method of solution adopted for solving
the examples of Chapter III and for solving the main problem presented

in Chapters IV through VII.

A, The Hamilton Canonical Equations

Consider the nonlinear oscillatory dynamical system represented by

the Lagrange equationéf

.- f =0 (2.1)
q q

d

dt £
where q 1is the generalized coordinate vector, t 1is the independent
variable, £(q,4,t) = T-V is the Lagrangian, and T and V are
kinetic and potential energies. The generalized momentum vector p

can be defined as

1~The subscripts q and q denote the arguments of partial differentia-

tion. The differentiation of a scalar function with respect to a column
(row) vector is taken as a column (row) vector; hence, a differentiation
of n-elements column (row) vector with respect to m-elements row (column)
vector is taken as an n Xm (m X n) matrix.

7



= 8. 2.2
p 4 ( )
and the Hamiltonian R aéf
T .
R=p q-8 (2.3)

Now, by using Eqs. (2.1) and (2.2), the variation BR of R can

be written in the form

.T .
SR = -p Bq + qTSp (2.4)
which yields the Hamilton canonical equations

q =R (2.5a)

(2.5Db)

Do
i
1
=]

According to these equationsf
R =R Tq + R Tp + Rt
q p
«Ts «Te
==-pqa+4qp+ Rt
= Rt (2.6)

therefore, if R does not depend explicitly on t, it is a constant of
the motion.

In general, for a function £,

TThe super%cript T over the column vector p denotes its transpose
(i.e., p is a row vector), and it should not be confused with the
kinetic energy T.

¥ . . ,

R T denotes a row vector of partial derivatives Rq'
q i



f=ft+qu+f D

T
q P

ft + (£;R) . (2.7)

where (£;R) is the Poisson bracket defined by

(f3R) =f R -f R (2.8)
T T
a P p 4

As a result, if f does not depend explicitly on t, it is a constant

of the motion if and only if (£f;R)= O.

B. The Hamilton Principle

Hamilton's principle for a conservative system asserts that the
motion of the system from time to to tl is such that the "variation"
t . . .
of the line integral fté ® dt for fixed t0 and tl is zero; i.e.,

t1
3] [ £dt =0 (2.9)

In the modified form of this principle, p and q are regarded as
independent. In this case, it is seen that it implies the canonical
equations of motion. With reference to Eq. (2.3), the integrand of

(2.9) can be written as
. o T.
£(q,p,q9,p,t) = p a - Ra,p, t) (2.10)

Then, if the end points in the phase space of (q,p) are fixed, Eq.
(2.9) requires that £ satisfies the Euler-Lagrange equations in the

form

and

— 9.
q

I
i)

2. =82 (2.11)
P



but Eqs. (2.2) and (2.10) infer

. =p € = -R . =0 £ =q-=R (2.12)

which, combined with (2.11), implies Eq. (2.5).

C. Transformation of Variables

Let the state of a system in the phase space be specified by a 2n

x = <q> (2.13)
P

vector,

and define the matrix ¢0 by

0 I
o = < (2.14)

where O denotes the n X n null-matrix, and I denotes the n X n

identity matrix; also note the following identities:

o] =1 e = -1 o = ¢t = -0 (2.15)

therefore, QO is an orthogonal and skew-symmetric matrix.

Now, consider the "stationary"” (time independent) transformation

X —9; defined by

_ q(q,p)
X = x(x) = _ (2.16)
p(q, p)

With reference to the definitions (2.13) and (2.14), the canonical equa-

tions of (2.5) assume the form

10



(2.17)

Under the stationary transformation of (2.16),
(2.18)

ax = Jdx

is the Jacobian matrix of the transformation given

is obtained, where J
by
9p 997
_ q P
J =x T = (2.19)
x — —
Ppr P
q P
Since
dR = R ,dx = R_TdE (2.20)
b4 x
then, with reference to Eq. (2.18),
R T = R J (2.21)
X X
Equations (2.17), (2.18), and (2.21) imply
X = PR (2.22)
where & is the Poisson matrix defined by
o = JQOJT (2.23)
x through

and the scalar invariant R 1is expressed as a function of
Eq. (2.186).
11



D. Canonical Transformations

A transformation is said to be canonical if it preserves the canoni-~
cal form of the equation of motion. Accordingly, and in view of Eqgs.
(2.17), (2.22), and (2.23), a stationary transformation (2.16) with a

Jacobian J 1is canonical if and only if

T
JQOJ = QO (2.24)
Substitution of Eqs. (2.14) and (2.19) into (2.24) leads to
s G N .7 Y-,
9\ r 49 p\d g =
q p P q
— \T = [~ \T
q T<p T) -4q T( T) =1 (2.25)
q p p q
- (= T = [z \T _ 0
PrlP g PplP ) =
q p b q
which, in turn, can be reduced to the conditions,
(qi;qj> =0

T |
..

g |
.
——”

1]

o

th
where qk and pk are the k elements of the vectors gq and p,

respectively, and

O, .
1]

=0 for i # j (2.27)



and

n
=

(£38) -f g (2.28)
An important technique for generating canonical transformations
using "generating functions" isdescribed as follows. Any generating
function S(q,b,t) with ]Sqﬁl #0 can be employed to generate a
canonical transformation (not stationary unless S, = 0) from (q,p)

t
to new variables (q,P) associated with the new Hamiltonian,

R=R+ S, (2.29)

and defined by

(2.30)

Q
It
[42]
T
1
[42]

To prove the above statement, the Hamilton principle is used in its

modified form,

t

1 q
3 (p°4 - R) dt (2.31)

%o

With the aid of Eq. (2.30), it then follows that

1 1 T
B (STél—R)dt=6f [dS—E;df)'—(R+St)dt]
to q t,
t
T, 1
=3(8 - @ p)t
o
t .
+ 5 [13 a- (R+ st)] dt (2.32)
)

13



and the first expression vanishes because the end points are assumed

fixed in the phase space. It follows that
a = R_ p = -R_ (2.33)
p q

where R = R + St'
If lSq5| # 0, the second equation of (2.30) can be solved for
B, and the result can be substituted into this equation so that the

transformation is obtainable in the explicit form

a(a,p,t)

(o]
Il

p(a,p,t) (2.34)

o]
Il

Finally, R(q,p,t) + St(q,B,t) is expressed as a function ﬁ(a,B,t).

A direct and interesting consequence of Egqs. (2.29), (2.30), and
(2.33) is that if the generating function S(q,ﬁ,t) of a canonical
transformation is so chosen that the new Hamiltonian R is identically
zero, then the new coordinates a = B and the new momenta 5 = will
be constants of the motion. In addition, S(q,Q%,t) will satisfy the

Hamilton~Jacobi partial differential equation

R(q,Sq,t) + st =0 (2.35)

E. Method of Solution

This section outlines the perturbation technique used to obtain the
approximate solutions of the examples in Chapter III and the main prob-
lem presented in the following chapters.

Consider the system represented by the Hamiltonian R given as a

power series in a small parameter ¢ in the form

n
<€

[oo]
R = 2: <7 R (a,p,t) (2.36)
n=0

14



If the Hamilton-Jacobi equation (2.35) is assumed to be solvable for

€ = 0, the method of solution will involve the following three steps.

(1) Solve the Hamilton-Jacobi equation
Ro(q,Sq,t) +8,.=0 (2.37)

which yields 8(q,Q,t); then Sy = B furnishes the solution
qy(®,B,t) and Po(a,ﬁ,t)- The resulting new Hamiltonian R
is

0 n
— _ — €
R =R + St = RO + St + T Rn
Lot
n=1

= i f_ (2.38)

and the new variables (Q,B) satisfy the standard form of

&

—_RB(O‘, B,t) (2.39a)

B ﬁa(a,B,t) (2.39b)
Note that an equivalent representation for the standard form

of these equations can be_; obtalned by a canoqlcal but stationary
transformation (q,p) —a(a B) that reduces R =R to

~

L@ a,B,t) (2.40)

Blm

SELB) = B i

~

In this case, the coordinate vector P represents '"fast
variables" that satisfy

. (o]
Ro3 2 E— (2.41a)
n: n
n=1
while the corresponding momenta still satisfy
. o €n
a = Z L. (2.41b)

n=1

15



2)

(3

To reduce Eqs. (2.39) or (2.41) tg a simpler_ form, a canonical
transformation from (Q&,B) or (0,B) to (Q,B) is (in gen-
eral) desired. This can be elegantly performed by using the
perturbation theory based on Lie transforms proposed by Deprit
[15]. A simplified version of this method can be found in
Ref. 16 and in the next chapter.

Solve the transformed differential equations resulting from
the previous step.

16




Chapter III

PERTURBATION THEORY BASED ON LIE TRANSFORMS

To reduce the standard forms of Egs. (2.39) or (2.41) to a simpler
form, it is desired to transform to new coordinates and momenta, as .
discussed in Chapter 1I. This transformation can be obtained by employ-
ing a von Zeipel generating function [21]. 1In such a case, the trans-
formation is implicit because the generating function is in mixed vari-
ables (the o0ld coordinates and the new momenta).

The shortcomings of the von Zeipel method were recognized by Break-
well and Pringle [11] and Deprit [25] when they used a von Zeipel gen-
erating function to remove the short-period terms from the Hamiltonian
of a particle in the neighborhood of the triangular points in the restric-
ted problem of three bodies. After comparing with Deprit et al [13],
Breakwell [12] observed that the long-period terms of the second-order
Hamiltonian, derived in mixed variables, was misleading and that it was
possible to obtain a different representation in terms of new variables
only. As a result of these observations, Schechter [12] obtained a more
valid second-order expression. Deprit [15] attacked the problem using
Lie transforms and extended the expansion to include higher orders.

This chapter obtains a simplified version of Deprit's method, which
is outlined and clarified by two examples. Section E develops a general
expansion of Hori's method, based on the Lie series, as a special case

of the Lie transforms

A. General Expansions

A Lie transform can be defined by the differential equations

dx
a—n = WX(X,X,t;T]) (3.1a)
dX
FeMC I (3.1b)
dt
an = 0 (3.1¢)

17



= = W (x,X,t;n) (3.1d)

whose initial conditions at 7 =0 are x = y(t;€), X = Y(t;e),

t =t, and R = 0, where

x,X = original generalized coordinate and momentum vectors
y,Y = transformed coordinate and momentum vectors

R = K(y,Y,t; e) - H(x,X,t;n) = remainder function
K,H = transformed and original Hamiltonians

W = the generating function

t = independent variable

€ = a constant small parameter

n = a varying small parameter 0 < q< €)

The above equations can be shown to define a group of canonical

transformations because

d

L gx =dw_ = w X + dt

an < XXT dx + WXXT d WXt

d

2 ex = oW, = & &

an X WX WXXT X + ngT X

d

ﬁdx_—dwx_-wde—wde—thdt
XX xX

9 oex = -BW = -W Bx - W 8%

dn X xxT xXT

d T T

4 3R = 5w =- ox" - 8

an OWy =Wy OF = Wyg X

18




Thus, the differentials dx, dX, dx, ®X, and OR that are produced
by the initial changes dy, dY, 8y, and 8Y satisfy

d—dﬁ(dezsx ~ dX'8x + dt BR) = O (3.2)

T T
From this equation it can be seen that dx 80X - dX'dx - dt dR 1is an
invariant of 17 and equals its value at 1 = 0, so that

%T8X - X'6x - OH = &Tsy - i{TSy - BK (3.3)

Therefore, if x and X satisfy the canonical equations,

% = Hy X = -H (3.4)
then y and Y also will satisfy the canonical form

y=K Y= -K (3.5)

It should be noted that Eq. (3.1) defines a group of canonical trans-
formations whether W depends or does not depend explicitly on 1.
When W does not depend on 71, Eq. (3.1) generates the so-called
Lie series (see Ref. 26, for example); if W does depend on 1, Eq.
(3.1) generates the Lie transforms, so named by Deprit [15]. Thus, it
may be stated that the Lie series is a special case of Lie transforms.
Now, take any indefinitely differentiable function f(x,X,t;e¢)
that can be expressed in terms of x, X, t, and ¢ as a power series

in ¢ in the form

o« n
F(x,X,t;¢) = z f— £ (X, 1) (3.86)
n=0

where

19



B
fn(x,X,t) = | — £(x,X,t;n)

n
on =0

In terms of y, Y, t, and €, Eq. (3.6) then takes the form of

> &)
£(x,X,t;e) = z = £y, Y, (3.7)
n=0
where
n
£y, v0) =[S rex,tn)
dn -0
and
af of dx dx
ﬂ (X,X,t,n) :E‘]+ fxT-E+ XTE (3.8)

£<0)

Note that fo(x,X,t) = f(x,X,t;0) and (y,Y,t) = £(y,Y,t;0).

Given the sequence of functions fn(X,X,t) of (3.6), the corre-

f(n)

sponding sequence of functions (y,Y,t) of (3.7) will be construc-

ted below. With reference to (3.1), Eq. (3.8) can be written as

df _ of
E]_B—T_]-FLW:E (3.9)

where LW is a linear operator called the Lie derivative generated by

W and is defined by the Poisson bracket
wa = (f;w) = f . f W (3.10)

Taking f = x, X, and R in Eq. (3.7) and using (3.1) obtains

20



(3.11a)

X =y +

n=1

< & L (n)
€ n

X =Y+ z = Yy, Y, ) (3.11b)
n=1
2 & _(n)
H=K-~- 2 % R (Y,Y,t) (3'110)
n=1
where, for n > 1,
-1
(n) _ a W
y JRCEN IR
] =0
n-1
g __fd W
dTln-l X
=0
R = - w
n-1 t
\dn N=0
In particular, for a generating function W of the form
(3.12)

(o)

n
W(x,X,t;m) = Z)-HTW (x,X,t)
n! n+l
n=

of the form given by (3.6), Eq. (3.9) yields

and f(x,X,t;€)
df >t (1)
an (x,X,t;1) = 27 £ 77 (x,%, 1) (2.13)
n=0

21



where, for n > 0,

n
fPaxo=t  + N L
n

e

=
'—h
I

(f;Wi)

In general, for k > 1 and n > 0, one obtains

dk o n (x)
L= S I 2% (x,x,1) (3.14)
d k L, i on
f n=0
where
n
- -1
£ F e x,t) = £ 4 z TR S
n n+l m m+l “n-m

m=0

letting 7 = 0 in the above definition yields the following re-
cursion equation which, for the remainder of this chapter, will be

referred to as the Deprit equation:

n

(k) (k-1) 2 n (k-1)
£y, Y,t) = £ T C L. f . (3.15)
m=0
where, for i > 1,
Llf = fyT iv fYT wly

In tﬁe Deprit equation,
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£(O (k) k)
n

(YyY:t) = fn(Y:Yit) (y,Y t) = f (y,Y,t)

therefore, it can be used to obtain the éequence of functions f(n)(y,Y,t)
of Eq. (3.7) in terms of the sequence of functions fn(y,Y,t) =

[f x,X,t)] x—- given by (3.6). (This can be visualized from the tri-
angle of Flg. 3.)

fo = £

Fig. 3. RECURSIVE TRANSFORMATION
I
OF AN ANALYTIC FUNCTION UNDER f|(l) f(z)

/ (: / (2) A(s) @
[ 77 717

For example,

(&)
T = fl + Llfo (3.16a)
1)
fl = fz + Llf1 + szo (3.16b)
f(z) = ffl) + Llf(l) (3.16¢c)
f(l) - f, + L . f_ + 2L, f  + L,f (3.164)
2 ~ 73 172 271 370 :
) Q) (1) 1)
fl = fz + Llfl + sz (3.16€)



G _ @, 2 (3.16%)

f =1 Llf
Similar triangles for H(n), R(n), y(n), and Y(n) are illustrated in
Fig. 4.
Finally, the inverse transformation can be written as

> € _(n)
vy =X + Z % xB (x,X,t) (3.17a)
n=1
S ¢))
Y = X + Z % X (x,X,t) (3.17b)
n=1
To find the relation between the x™, y™ and the x, v, one

can eliminate x-y, X-Y between Eqs. (3.11) and (3.17) and define the

functions q(x,X,t;e) and Q(x,X,t,c) as

q(xXt,e)—z = ) (x,%,t)
3 €
Z =y 7,0 (3.18)
n=1
and
c & (n)
Q,X,t;e) = z % M x,X, )
n=1
oo n
- - Z % v (5, v, 1) (3.19)
n=1



Ho NG)

H| H(‘) ’ "'W" =R(')

Hp /H" B

[ /*(" 7*!‘2’ H3 o RE R
Z / (1 /H(z) /Hm Y@ /w‘" /Rm [R () o
NN aNy

H-TRIANGLE R~TRIANGLE

W=yt

Wy y(z)

Wiy |( 2 yle)

A« / 7 A‘” y® w4 /Yu:) /(m v
frrr

y-TRIANGLE Y -TRIANGLE

Fig. 4. TRIANGLES FOR THE HAMILTONIAN H, THE COORDINATES vy,
THE MOMENTA Y, AND THE REMAINDER R.
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Comparison of Eqs. (3.18) and (3.19) with (3.6) and (3.7) leads to

0
9y = q( ) =0 (3.20a)
0
QO = Q( ) =0 (3.20b)
and, for n > 1,
n n (n
q = x( )(x,X,t) q( ) = -~y )(y,Y,t) (3.20¢)
n (n n
Q, = x( )(x,X,t) Q ) —Y( )(y,Y,t) (3.204)
B. Simplified General Expansions
Given the sequence of functions £ , f , e+, and £ , there
n n-1 O(n)
are two approaches to constructing the required functions £ (n > 0).

The first is the Deprit approach which introduces certain auxiliary

k .
functions f; ) and moves recursively from the left to the right diagonal

of Fig. 3.

f(n)

The second approach, proposed here, is to construct (n > 0)

£ (0=1) £(0)

and by introducing a suitable

only in terms of fn, y ey

linear operator. This approach is useful in constructing the inverse
transformation and simplified general expansions.
To illustrate how this can be accomplished, let the Deprit equa-

tion be written as

-1 n>1
(k+1 a n-1 Z
g0 _ p ) Aty g (3.21)
n n~-1 m m+l n-m-1
~ k >0

By successive elimination of the functions on the right-hand side of

fék) eventually is obtained in terms of f(k+n)

£ &)
n .

the above equation,

f(k+n_1), ..., and f(k); thus, for

, the form
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=
v
Jory

n .
p O _ p(ken) z ot g g kn-d) (3.22)
n J J

j=1

can be assumed, where Gj is a linear operator and is a function of
Iﬁ’ 13_1, .e., and Ll- Substitution of Eq. (3.22) into (3.21) yields
the recursion relation

G, =L, — C L G, 1 <j<n (3.23)
3 J m-1 m j-m - -
m=1
For example,
G1 = L1 (3.242)
G, =L, - L,L (3.24b)

9]
li
=

- Ll(Lz - L1 Ll)—2L2L1 (3.24c)

For k=0 and k =1, Eq. (3.22) yields

n .

PAC P Z g, gd) (3.252)

n 33
J=1

n .
£ _ ) B g, @I (3.25b)
n J J
J=1
Also, if ij(k) is defined as £, it Eqs. (3.25) can be written as
b
n
£® _ e ot S (3.26a)
n J J,n=J
j=1



n
£ () o g(mrl) z e S (3.26b)
n J “Jj,n-j+1
=1
where
) j-1 gj-1
b = L.f(l) - C m j-m,i
j,i J 2, m-1
m=1
Using Eg. (3.26b), with f = y,Y and with the help of the y and
Y +triangles, the general recursive relations for y(n) and Y(n) of
Egs. (3.11) can be obtained:
n-1
(n) n-1
= + C . . (3.273)
v nY z J yJ;n_J
j=1
n-1
— -1
v® -y . c? o (3.27b)
ny J J,n-J
j=1
where
. j-1 .
(1) j-1
=L - .2
yj,i jy Z m-1 m “j-m,i (8.282)
m=1
. J-1 .
-1
v, o=1ny® z J . (3.28b)
Jj,1i J m-1 "m j-m,i
m=1
Using Eq. (3.26a) with f = q,Q of Egs. (3.18) and (3.19) yields
n-1
(n) (n) z
- - + . ) (3.29a)
Y J yJ;n—J
=1
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where ¥y, . and Y, .
n-j J,n-J

H
and x(% x,X,t) of (3.17) are given simply by

are defined by Egs. (3.28).

x(n)(x,x,t) - [X(n)]y=x
¥=X

(n) (n)
" x,x,t) = [x° ]y=x
v=X

Given the Hamiltonian H(x,X,t;e) in the form

e n
HE,X,t5e) = :Z’ ﬁ% Hn(x,X,t)

n=0

(3.29b)

()

Now x (x,X,t)

(3.30a)

(3.30Db)

(3.31)

the transformed Hamiltonian K(y,Y,t;e¢) must be constructed in the

form

@ n
€
K(y,Y:t;E) = z _I;T Kn(Y:Yrt)
n=0

(3.32)

The relationship between Kn and Hn can be obtained as follows.

Referring to Eq. (3.7), H can be written as
< € (@)
HGOK 630 = S g7 B, Y,0)
n=0

Combination of (3.11lc) and the above equation yields,

29

(3.33)

for n>1,

(3.34a)



K =H + R (3.34b)

Using (3.26b) with f = H+R 1leads to

n
R A ok, . n>1 (3.35)
n n n+l J T j,n-j+1 =

j=1

but from the H and R triangles of Fig. 4,

(1) 2 n
H = H + C L H n>ao (3.36a)
n n+l m m+l n-m -
m:O
1
R( ) = -[w ] n>0 (3.36Db)
n n+l t -

Therefore, the simplified general recursive relation of the transformed

Hamiltonian is, for n >1,

K0 = H0 (3.37a)
n-1 n-1 n-1 Dw
kK =H + Y (c] ) L+ C R (3.37b)
n n 2, J-1 J n-j J J.n-j Dt
j=1
where
DW ow
n_ _n_
ﬁ— = T‘t Ln HO n 2 1 (3.38a)
j-1
K =L K, - o T
3,1 = 5 %y Z m-1 W jem,i (3.38b)

m=1
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Equations (3.37) and (3.38) are applicable directly to nonlinear
resonant problems in which Ho is a function of only the adtion vari-
ables X = Q, and Hp(n > 1) depends trigonometrically on the angle
variables x = E and possibly on time t. It is advantageous to trans-
form to new variables so that the resulting Hamiltonian. contain (to-
gether with the new action variables Y = a) only certain slowly vary-
ing "long period" combinations of the new angle variables y = B and
time t. Equations (3.37) and (3.38) can be used to define wn succes-
sively so as to remove all "short period" terms from the K ; such a
Wn is unique up to an arbitrary additive long-period term. It should
be noted that, in this case, Wn are easily obtainable as solutions to
partial differential equations of first order.

When resonances do not occur, the transformation

x(y,Y,t; ¢)

]
]

>4
1]

X(y,Y,t; e (3.39)

can be constructed, which reduces K to

K = = K (V) (3.40)
n. n

n=0

The solution of the original system (2.41) then reduces to the solution

of a system in the form of

L]
]
]
s
1}
(o]

(3.41)

1l

which is given simply by Y =Y and y KY(YO)t + Yoo where Y and

0 0

yo, are arbitrary constants.

Note that Eq. (3.26a) does not require fn to be the given functions;
in fact, (3.26a) has the property of constructing fn from thé f(n),
which can be valuable in reducing the computation requirements when the

given Hamiltonian is limited in order. This can be achievaed by letting
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K = KO + €K1

finding K, ; < 0 for i > 2 and for all possible values of j.
Js -

be the given Hamiltonian; then, in view of Eq. (3.38b), by

This fact and Eqs. (3.37) lead to the desired reduced formula for con-

structing the transformed Hamiltonian

H(x,X,t;¢) = H(y,Y,t; e (3.42)
y=X
Y=X

C. The Formal Technique

Consider the system of vector differential equations in the stan-

dard form,
x = H, X = -H (3.43)

with Hamiltonian

2
H(x,X,t;€) = Hy(,X,t) + eH (x,X,1) + % Hy (x,X,t)

3
£

* 37

HB(X,X,t) + een (3.44)
The essence of the technique proposed in this chapter consists of con-
structing a canonical transformation (x,X) — (y,Y) to achieve specific

requirements (e.g., elimination of short-period terms) in the transformed

Hamiltonian
€2
K(y,Y,t;¢e) = Ko(y,Y,t) + eKl(y,Y,t) + o7 K2(y,Y,t)
€3
+ 3—" KB(Y,Y,t) + e (3-.45)

This canonical transformation is expressed explicitly in the power series,

2 S @

@ 37 Y (y,Y,t) + ...

2
X=y+ ey (Y1) + 5y vy @ .0

v

(3.46a)
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2 3

1 .e 2 3
X =Y+ ¢ Y( )(y,Y,t)'+ 37 Y( )(y,Y,t) + g% Y( )(y,Y,t) + ...
(3.46b)
and in its inverse,
2 3
1 2 3
y =X + € x( )(x,X,t) + fﬁ x( )(x,X,t) + §T x( )(x,x,t) +
(3.47a)
2 3
1 2 3
v =x+ exPx,x,t) + % x® x,x,4) + 367 x¢ )x,%,t) +
(3.47b)
Furthermore, any analytic function f£(x,X,t;e) given by
€2
f(x,X,t;0 = fo(x,X,t) +oe 1 (%,X,t) + 5y £, (x,X,t)
€3
+ 37 fS(X,X,t) + .. (3.48)
can be expressed as
) @ 2 @
£(x,X,t;e) = £ (y,Y,t) + ef (y,Y,t) + ;! £ (y,Y,t)
3
3 3
+ 37 f( )(y,Y,t) + een (3.49)

The operations performed to carry out the canoqical transformation

are basically recursive and initiated by taking

Ky(y,Y,t) = Hy(y,Y,t) (3.50a)

£ (0

(y,Y,t) fo(y,Y,t) (3.50b)

The first-order operation begins by considering the linear partial

differential relation
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DW

ot (3.51)

Kl(y,Y,t) = Hl(y,Y,t) -

Assuming that a choice has been made for K Eq. (3.51) can be inte-

1’
grated to obtain Wl(y,Y,t), and the following sequence is computed

y(1)

= Wiy
(6B)
Y _-le
1
NICOIN €D
(3.52)
1 1
L@ _ @
0
f =L
1,0 1f
(6D
f = fl + f1’0
to complete the process of first ordering.
To prepare for second-order expansion,
K =LK (3.53)

1,1 171

is computed and, at second-order level, the partial differential relation

DWZ
K2 = H2 + LlHi + K1,1 " Dt (3.54)

is set up. The unknown function K2 is selected in compliance with
the goals proposed for the transformation, and the resulting linear
partial equation is integrated to yield Wz(y,Y,t). The second-order

expansion is completed by computing
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Vy,0 = MY

Y= LlY(l)

s - Yoy ¥ Y11

v® - Way * Y11

L@ @ 29, |

x3 _ @, 2v, (3.55)
£, = Llf(l)

Ty,0 = sz(O) “ %o

f(z) = fz + 2f1’1 + f2,0

To prepare for the third-order expansion,

K .
1,2 L1 9 (3.56a)

=
1

2,1 L2K1 - L1K1,1 (3.56b)

=
1]

is computed and, at third-order level, the partial differential equa~-
tion

DW
3

- H_ + LH 2 -3 3.57
Ky = Hy + LMy + 2LH, + 2K 5+ Ky " (3.57)

is formed. The unknown function is chosen, and the resulting partial

differential equation is solved to yield W The following sequence

3
of operations will complete the third order.
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V1,9 = Ly

Y1,2° L1Y(2)

V2,1 = Lzy(l) “ LY

Y91 ° LzY(l) - LY

y@ - Way * 2Y) 5 * Yo 4

v 2 Wy, +2Y) 5+ Yy

X(S) = —y(3) + 3y1’2 + 3y2’1
G _ 4@, 8Y, 5+ 3Y,

£, = Llf(z)

fa1 71 £ - L

T30 Lsf(O) - L% 07 2 0

TS S VR

(3.58)

The entire procedure can be extended to any order by using Eqgs.

(3.6), (3.7), (3.11), (3.17), (3.26a) through (3.32),

(3.37), and (3.38).

Compared to the technique proposed by Deprit [15], one finds that the

operations outlined above are simpler and require less computer time

and storage.

D. Simple Examples

1. Example 1

Consider the nonlinear differential equation

. 3
q+qg+ e€q =20
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Now, define
a=p (3.60a)
and, with reference to Eq. (3.59),
b= -(q+ eq) (3.60b)

which can be put in the form,

qg =R (3.61a)

p = -R (3.61b)

where R is the Hamiltonian given by

R = RO + eRl (3.623.)
1 2 2

RO = E P + q) (3.62b)
1 4

R1 =7 q (3.62¢)

Following the steps outlined in Chapter II.E, the standard
form of the above equations can be obtained through the stationary

transformation (q,p) - (B,a) defined by

q = /20 sin E (3.63a)
P = A/20 cos B (3.63b)

which is canonic¢al in view of Eq. (2.26). The new Hamiltonian H = R

now takes the form
(3.64)
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where

H0 = O
and
oF ~
Hl =g (3 - 4 cos 2B + cos 48)

It is now desirable to transform from (a,E) to (a,_ﬁ) so that the
transformed Hamiltonian K contains only secular terms.
Following the steps outlined in the previous section (up to

second order) with x = 'B, X=0Q,y=08, Y= Ex, and f = q and elim-

inating the intermediate steps in the analysis obtains

Wi =33 (sin 4B - 8 sin 2B) (3.652)
a?
W2 = - 155 (sin 6B + 9 sin 4B + 99 sin 2B) (3.65b)
- 3 = 17 a? 2
K_O!+80lze—-6—4 € (3.65¢)
~ = & _ -
a=qo- €5 (cos 4B - 4 cos 2B)

2 - _ _
t e o (2 cos 6B + 6 cos 4B - 42 cos 2B + 17) (3.65d)

~ = a ] - ) -

B=2B+ 61—6-(51n46—851n2[3)

2 of - . -
+ € Ez—(sinSB—lSsinGB—4sin4B

+ 400 sin 2P) (3.65¢)

~

Q=0+ e?(cos 4B - 4 cos ZNB)

~3
o ~ ~
- € &7 (6 cos 4P - 24 cos 2B - 17) (3.65f)
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E'= E - € {% (sin 4E - 8 sin QE)
2 o ~ ~ "
+ € Jii ( sin 8B - 8 sin 6B + 68 sin 4B
512
- 392 sin 2B) (3.65g)
-.3/2
- Y% . = o - -
q = (2a;451n B -¢ -£E§%——— (sin 3B + 6 sin B)
- 5/2
+ &2 % (2 sin 5B + 78 sin 3B + 303 sin B) (3.65h)

Referring to Eq. (3.65c) and according to the last step in the method

of solution, the transformed system of equations
a = -K=- =0 (3-663.)

3 = 51 = 2
=1+ZO.’€-——(126 (3.66Db)

can be solved. This solution is given simply by

a = ab(e) (3.672)

- - 51 -2 -
B <1 + g o e - oL O¢O€2>t + B (&) (3.67b)

where ab(e) and Bb(e) are constants determined by the initial condi-
tions of (3.59). Equations (3.63) and the inverse transformations
(3.65f) and (3.65g) are useful for this purpose.

It can be noted that there are two integrals of motion. The
first is exact and detérmined by the fact that the Hamiltonian R is a
constant (also, it is the total energy of the system). The second in-
tegral (3.67a) is approximate in terms of q and p and can be deter-

mined from the inverse transformation (3.65f) as
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2

1 2 2 € 2 2 2 4 € 2 2
3 r +4q9) - 32 (3p +6pqgq - 5q°) + 312 (a" +p)

4 3 -
(35p4 + 7Op2q2 - 13q7) + 0(e) = ao(e) (3.68)

The algebra of the above example can be carried out in terms of the
noncanonical variables for the amplitude and phase. This can be done
by applying Egs. (3.37) and (3.38) for a canonical transformation

(q,p) - (&,B) and by defining a as A sin 5 and p as A cos 5.

In this case, DWn/Dt = Bwn/aﬁ, and Wn can be used to eliminate the
short-period terms from K . For this elimination, q and p must be
substituted in terms of A and @. After the elimination, A and &
are then substituted back to a and 5, and the necessary Poisson
brackets for the next step are then computed in terms of these q and

P, and so on. For further details see Refs. 27 and 28.

2. Example 2

Consider the near-resonant Mathieu equation
d+ (1 + €ecos2wt)g =0 (3.69)
where w = (1 + ), and 7 = 0(€) 1is called the detuning. The effect
of the trigonometric coefficient is to introduce a small fluctuation in
the spring constant of the simple harmonic oscillator. Now, define
P=q (3.70a)
and, with reference to Eq. (3.69),
p=-(0 + € cos 2wt)q (3.70b)
which can be put in the form,

q=R (3.71a)

p = -R (3.71b)



where R 1is the Hamiltonian given by

R = RO + eﬂl (3.72a)
1 2 2

RO = E (p + q ) (.3.721'))
1 2

R1 =3 4 cos 2wt (3.72c)

As in the previous example, the canonical stationary transformation

(3.63) is used. The new Hamiltonian H then takes the form of

H=H  + e€H (3.73)

where

and

N Q1

[cos 2wt - % cos 2(wt +E) - % cos 2(wt —NB)]

H =

.
~

Because f = B~
a

direct elimination of cos 2(wt - B) by the generating function Wy

1 + 0(e), one expects that w - % = 0(e) and that

will lead to the so-called 'small divisor" which endangers the conver-
gence of the perturbation development (for example, see Ref. 21, p. 296).
To avoid the appearance of this small divisor, cos 2(wt - %) should

be treated in the same way as the secular terms in example 1.

By ignoring the additive long-period terms'in W1 and WZ,
the second-order analysis leads to the following results:
W1 = a[él sin 2wt - a2 sin 2(wt + B)] (3.74a)
W _a a_ sin 2B + 8a, sin 2(2wt + B
o =7 [2p 5in 2B + 8ag + P
- 8a, sin 22wt - P) - 2a a, sin 4uwt] (3.74b)
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_ - 2

a - -
K =0a-eg cos 2(wt - B) - £4- 2,0 (3.74c)

Q= a+ 2a,.0c cos 2(wt+-é)

2

2. - -

+ € oz[—2a4 cos 2(2wt -B) + (ala2 -2a3) cos 22wt + B)
g = 2
- (ala2 + —4——) cos 2B + 2a2] (3.744)
B=B+c[a sin 2wt - a, sin 2(wt + B))

2

€ . 3 . =
+ 5 Ii—-Za4 sin 22wt - B) + (Za3 - alaz) sin 22wt + B)

2 _ a_a
+a, sin 4(wt + B) - sin 4wt

a2 _

+ (a132+T) sin 25] (3.74e)

od=0- 232ae cos 2(wt + P)

Do ~

+ € Ot|:2a4 cos 2(2wt - B) + (ala2 + 2a3) cos 22wt + B)

~ fa,a_ - iz—> co 2'\5' 2a2 (3.747%)
( 1%2 T g )OO0 SR+ L8, .

B = NB - e[al sin 2wt - a_ sin 2(wt + ~B)]

2
2
e . ~ . ~
+ P [Za4 sin 2 (2wt 8 - (ala2 + 2a3) sin 2(wt + PB)
9 - a_a
+ a2 sin 4(wt + B) + 5 sin 4 wt
ag -
+ (alaz - =) sin 2B (3.74g)
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q = (2(3t)|/2 sin B + e(2a)/2[<2 a,) sin (2wt + B

a 2 a2 af
+7151n (2wt-73):] +——(2a) [ 2a, * 1 +T)

1 2 -
sin (4wt - B) + <2a3 1 *2 + 7 a) sin (4wt + B)

1
a
2 2 1 =
+ (?.2 g — ] (3.74h)
where
a; = 1/4w
a2 = 1/16(1+w)
ag = (2a2—a1)/16(2w+1)
a, = a1/16(1—2w)

To solve the transformed equations, time t is first elimi-

nated from (3.74c) by using a generating function S of the form
s = aXB -wt) (3.75)

_x.
where O is the new momentum. With reference to Eq. (2.30), the new

coordinate B* and the old momentum O are
3
B =8 x%=P0/-owt (3.76a)
a = s = O (3.76b)

*
The transformed Hamiltonian K then is defined by Eq. (2.29) as

K =K + St
2 .
* O,’* X € »*
= =-NO - —_— - a
ul €3 cos 28 —4 a2
= <n+ - @ 2)(1 - e—— cos 26 (3.77)
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where the definition of the detuning 17 is used.

Because K* does not depend explicitly on t, it is a con-
stant of the motion. The stability or instability of a system governed
by Hamiltonians of the form (3.77) can be established by a comparison
of the magnitude of the coefficients of Of and Of cos 25*. The rela-
tive magnitudes required of these instability or stability coefficients
can be determined as follows.

* *
From (3.77), the differential equations for & and B are

obtained:

* * Qf *

. € .

o = —ﬁ#__ -3 sin 2B (3.78a)

. % K* €2 c za* 3 78

B = o = N+ a, + 5 cos (3.78b)
Squaring (3.78a) yields

x2 2 4K, 4 < o :
2 o), 0 U o
- 2 -+ - (3.79)
1504 [Se

* *
after sinz 2B is replaced from (3.77) and the constancy of K is
used.

*
The condition necessury for & to vanish is obtained by
setting the right-hand side of the above equation equal to zero, i.e.,

at the intersection of the two lines

y=xa (3.80a)

and

+ — O (3.80b)

I
1
Q*
0
Q
7]
)
™
*
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as shown in Fig. 5.

From this sketch and with the help of Egs.

and (3.80), at point @,

%
0 B <o
4 2 *
x 4N+ ea, + ecoszﬁo
Ob 2
4N + € + ea2
T
E |n| =1!3:5)
* . X
ia2€/2 B <O
4 e2 *
x 4N+ a2+60052f50
% 2 '
4n + €a,y
b1
n 3 [n| = 1,3,5,
. %
0 B <0
X
x 4N+ €a, + ¢ cos ZBO
Ob
4 - € + €a,
7
ng ]n| = 0,2,4,
¥
0] B >0
2 *
% 40+ €a, + ecosZBo
% 2
an - e+ ea,
Tt
nE |n| =1,3,5, .

(3.78)

(3.81)

(3.82)

(3.83)

(3.84)



y4

2
IsLope|- | 3152 |
@
> a*
2
C% |sLopE |- | 375 5,
, |

y=-a*

Fig. 5. STABILITY CONDITIONS FOR MATHIEU-TYPE HAMILTONIANS.

On the line :t‘rom@ to@, B* is monotonically increasing or decreas-
ing depending on whether the slope is negative or positive, respectively;
on the other line, Oﬁ is monotonically increasing.

For some initial conditions Og and B*, the variation of o
is bounded by the lines y = iOﬁ if |(4n +€2a2/el > 1, thus implying a
stable motion; if |(4n + €2a2)/€| < 1, o grows without limit. This
leads to the conclusion that the motion is unstable if, in the Hamiltonian
K*, the magnitude of the coefficient of o is smaller than the magni-

* *
tude of O cos 2B".

The transition curve between the stable and unstable regions

noted above is defined by |slope| = |(4n + e2a2)/€l==1. On this
boundary, unstable motion occurs if B: is not a multiple of /2.

For slope = 1 and Bg = /2, 3n/2, ..., or slope = -1 and B: = 0,
T, 2%, ..., a stationary solution is obtained (i.e., a*= é* =0). 1In

these cases and referring to Eqs. (3.74h) and (3.76), q represents a
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family of periodic orbits whose period is twice the period of the perturb-
ing excitation. These orbits, however, are unstable because, for any

¥ .
disturbance in phase P, unstable motion is obtained similar to that

when Islopel <1.

E. Perturbation Theory Based on the Lie Series

This section derives the general formulas of Hori's perturbation
theory based on the Lie series. Hori [27] chose W and f in Egs.

(3.7) and (3.9) so that they do not depend explicitly on T. 1In this

case,
00 n n
£(x,X)| = £(y,Y) + 2: £ |4 Efx.X) (3.85)
'n:e n. d n
n=1 n =0
and
df(x,X) _
——:;H——— = Lw £(x,X) (3.86)

Because the right-hand side of the above equation does not depend ex-

plicitly on 17,

a1, x) _ a4 [df(x,X)]

dn2 dn dn

Lw[Lw £(x,X)]

Lﬁ f(x,X) (3.872a)
can be written, in general, for k 2 1,

dkf(x,X) _
— =

Lx £(x,X) (3.87b)
dn
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[

To construct Hori's expansion, choose

eW(x,X) = 2 W (x,X)

n=1

£(x,%X)

20 fn(x,X)

Equations (3.86) and (3.88) now lead to

df(x X) _ ZS f (x,X)

where
n
) -
(x,X) = Z P SR
m=0
In general, for k > 1,
(k) o
k df X k
€ af X)) ‘;ﬁ fé )(X,X)
V-
dT] n=0
where
n
(k) T (k-1)
fn %) = :z Lm+1 fn—m G, X)
m=0
Therefore,

k o0
k [fd £(x,X)
<—~—k—) Z 19,1

dn _
-0 n=0
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e ot Ll

where

(k) _ (k-1)
n (v,¥) = l'm+1 fn—m
m=0

f (y,Y)

Because the transformation is stationary (W does not dcpend

explicitly on t), and with reference to Eq. (3.1lc) and its defini-

tion,
H(x,X) = X(y,Y) (3.92a)
or
Z H (x,X) = Z K_(v,0) (3.92b)
n=0 n:o

substituting £ = H(x,X) in Eq. (3.85) and making use of (3.91) obtain

K (y,¥) = Hy(y,Y) (3.932)
n:} 1 (n-m)
Kn(y,Y) = Hn(y,Y) +- Z‘ m Hm (y,Y) n 2 1 (3.93b)
m=0
where
O PR T e T (3.94)
SR A 25 341 m-j V! )
j=0 .

These equations provide the general formulas needed to construct the
transformed Hamiltonian for Hori's method. They can be written in the

form,
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) ) H 5 L _H 3.0 + —— HO™ (5 vy
Kn(y’Y B n(y’Y) * :E [ mel n-m-1"Y" (n-m)! "m Ys
m=0
+ L H (7, (3.95)
In computing H;n»m) from (3.94) one may take
i-1
1 1 (i~m+1)
_ - - -  __ H .
Hy Kivr " By Z (T-miD)! o m (3.96)
m=0

The fourth-order expansions of (3.93) and (3.95) confirm those of Hori
[271.

It should be noted that the expansions based on Lie transforms can
be obtained fror the expansions based on the Lie series by replacing

W and f of Egs. (3.88) by

- 1
£(x,X) = Z = £ (x,X) (3.97a)
1
oW (x,X) = z = wr'l(x,x) (3.97b)
n=1
where
1 —
W= W,
1 —
Wy =¥y
wW! =W_ + 1 (W_;wW,)
3 372 ‘gl

| B .
W4 W4 + (W3,W1)

and so on.
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It was shown [29] that expansions similar to those obtained in this chap-
ter for treating nonlinear oscillation problems with non-Hamiltonian for-
mulation can be obtained. In this case, one constructs the mapping X %

so that the given system of differential equations

e n
. €
%= £(x;0 = z = £ @) (3.98)
n=0
reduces to a simpler form of
. o n
h - € -
X = g(x;e) = 25 T gn(x) (3.99)

n=0
in which g(%;e) contains only some desirable terms.

In the same spirit as (3.1), this transformation can be obtained by

introducing a generating vector W and the differential equation

=W (3.100)

with initial conditions x = x(t;e).

According to the choice of W [wW = w(x;n), W(x;n), or W(x;e)l,

some related formulas are obtainable. For W = W(x;n), the analyses
were carried out in full detail, see Ref. 29. In the case when W =
[oe]
- n-1 -
W(x;n) = n§1 I /(n-1)! W(n)(x), the obtained expansions serve as general

formulas for the well-known Krylov-Bogoliubov method of averaging [30] in

which

- n (n) —_
X = X + z % w ' &) (3.101)

In the following chapters, some of the formulas obtained here, based
on Lie transforms, will be used in a fourth-order analysis of the motion

of a particle in the neighborhood of L of the earth-moon system in the

4
presence of the sun.
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Chapter IV

THE HAMILTONIAN R OF A PARTICLE NEAR L4
In this chapter, Newton's gravitational law is used to obtain the
Lagrangian of a particle moving in the gravitational fields of the sun,
earth, and the moon. After being normalized, this Lagrangian is used to
obtain the Hamiltonian of such a particle in the neighborhood of the
L4 libration point in a rotating frame. Because Newton's law is only
valid in an inertial frame of reference, the following calculations
begin with such an inertial frame in which the positions of the earth,
moon, sun, and particle P are designated by the numbers 1, 2, 3, and
4, respectively, and by the position vectors 5;(1 =1,2,3,4), as

shown in Fig. 6. Newton's law then takes the form of

r
= 4i
= —— 4.1
r, oy f3 ( )
i=1 4i
. &P
sy =
r1 = }.Li rT (4.2)
i=2 1i
where By = Gmy ; G 1is the gravitational constant, and m, is
the mass of the ith body .
From vector addition,
- = =
r14 = r4 r1 4.3)
and
> — s
r14 = r4 r1 (4.4a)
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(0)

Fig. 6. GEOMETRY FOR THE PROBLEM OF FOUR BODIES.

which, in view of Eqs. (4.1) and (4.2), implies

(b + 1) 3 r., T
oL 4 . _4i 11 (4.4b)
14 ~ 3 14 Z Hil 73 3 g
T14 i=2 41 T1i
This equation can be written as
N oV
T 4.5)

where V 1is the potential energy of the particle P defined by
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(B, + 1) 3 r°r
1
V = = __l;___é_ - E pi — - —llg_lé (4.6)
14 i 41 rli

Equation (4.5) can be derived from a Lagrangian £ of the form
[see Eq. (2.1)]

I‘.}r -V “.7)

Because My << My F;z(t) and ;13(t) are known essentially from

lunar theory. Neglecting My in Eq. (4.6) and substituting for V
in (4.7) lead to the Lagrangian

For

o 15 5 +“1 .\ 1 12714
= - . _— M _—_—

2 "1af1a T ¥, 2|7, 3

12

P

1 314

VR (T 1: 8 & (4.8)
3 r34 r3
13

Before the Hamiltonian is obtained, it is convenient to nondimen-
sionalize all the quantities. For this purpose, reference frequency

n and length D are chosen, defined by

n = mean angular velocity of the
moon (see Fig. 7) = 0.23 rad/day (4.92)
D= (rlz) = mean distance between earth and moon

R

2.4 x 10° mi (4.9Db)

It should be noted that the physical quantity that can be measured most

accurately is n. Here length a is actually a computed rather than a
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Fig. 7. ADOPTED COPLANAR MODEL FOR THE DESCRIPTION
OF THE MOTION OF A PARTICLE P NEAR THE SUN-PERTURBED

EARTH-MOON L4 LIBRATION POINT.

natural quantity and is defined by Eq. (4.9a). Note also that a is not
exactly equal to D; the difference is caused by the presence of the sun
and the lunar eccentricity and is obtainable from the lunar theory. To
be precise, Fig. 7 defines L4 as an equilateral triangle with a "mean
earth’ and a "mean moon" that revolve about their barycenter B at uni-
form rate n and mutual distance D =1.

Two basic dimensionless quantities to appear often in the following

equations are
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= 0,074801 (4.10a)

m = ”
Ho

and

K,

2 ~ 1

b= = (4.10Db)
By o+ by 82.3

where r is the mean distance between the sun and the barycenter

3B
B, and nS is the mean angular velocity of the mass center around

the sun. Now, the Lagrangian §£ in the dimensionless form but re-

taining the old symbols can be written as

r.r V. -V (4.11)

2—!‘.1' I -
T2 714714 EM S

where
> =
. r
= 1
VEM - C I'i‘ + L ;—1— - -r—-— - 12314 (4.12a)
4 14
14 2 T
r, \ T
2 1
v - -mi(2B)\ (1. _ 1314 (4.12b)
S T13) \F34 .
13

and C denotes a/D.

Just as n was the basic quantity selected in the nondimensionali-
zation of the equations, m is selected as the basic quantity that de-
fines the order of magnitude; O0O(1) will denote a quantity of zeroth-
order, O(m) a quantity of first-order, O(m2) of second-order, etc.

Because of Schechter's conclusion concerning the out-of-plane

motion, this research will be limited to a coplanar model, as shown in
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Fig. 7.

In this model, rlz(t)

and

Pontecoulant's lunar theory [31,32] as

<

r

12

v(t) =

where

I

1 2) 2( 1 2) 9 3
1+ e(l 3 e CG + e (1 3 e C29 + 3 e C39
e e e
4 3 1 2 _ 179 4
t3° Cp t§™ T 288
e
2 19 3 131 4) 7 4
+<m * 18 " /C2 * 8™ Cgo
(15 N 81 m2) LI
16 16 r3B Qs
EE m2 —l— C - - m2 C + — meC
* 6a 36~ 12 " e 20 -6
3B s e s e
33 2 5
+ E m eCze +0 + O(m )
S e
1 2 5 11 2 13 3
2e(1'§e>se+4< 566)329 12 ¢ 536
e e
103 4S (11 2 59 m3 893 m4>s
* 796 € a0 8 * 13 72 26
e S
201 4 15 2
+* 556 ™S40 T 7 ™S9 -0 tE ™S940
S S e s e
1 15 2 1
- (7§ + %; m2) r1 SG §g r 839 + 0(m)
3B s 3B s
sin
cOoSs

0.0549 = 0(m)
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are obtainable from De

(4.13)

(4.14)



1~ 0.002559 = om?)
T3 ,
8 = w t
S S
6 =wt -0
e e e
W = 1-m
S
W -1.8,2_ 225 3
e 4 32

and ée denotes the initial longitude of the moon perigee relative to
the inertial line of Fig. 7.

The Lagrangian £ of Eq. (4.11) now can be written in terms of
the displacements and velocities measured in the L4—centered Xy frame

by writing the dimensionless vector relations as

- 1 ~ ~

_ (L g 5 (4.15a)
T4 (2 + X + “xm>1x +<,J§/2 + ¥y + uym>1y
T1a4 <dt) 1412 ° Tig

Geovopx - NB/2 -y - T

. . 1 ~

+ (y Y, b5 b X+ pxm)ly (4.150b)
- 1 &
1'.24 —< 3 + X - (1—p)xm)1x

+ (\B/2 +y - (1—u)ym)1°y (4.15¢)
- ~n o~
riy = a + xm)lx + ymly (4.154d)
N
r

13 ~ [rzsces +u@ o+ xm)]ix

+ (--r3BSes + uym)ly (4.15e)
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where 1 and fy are unit vectors along the x and y directions,

X
fz = fx X fy, R denotes the rotating frame, and
x = -1 + r 5 cos v(t) (4.16a)
= i -1
Yo = Fyg Sin v(t) (4.16b)

The quantities X,5,P» and py will be treated as being of O(m);

b'e
through the relations

P and py are the momenta conjugates to x and y and are introduced

- N3/2 = L. .
P, N3/ £, (4.172)
p +2=¢ (4.17b)
y 2 y :
which yields a Hamiltonian,
. 1y
R = (px - J3/2)% + (py + E)y - @ (4.18)

Writing £ in terms of %X and y by using Eq. (4.15b), and substituting
for X and ¥y in terms of p, and Py from (4.17) will yield

1 2 2 . 1
R =3 (px + py) + o, - xp ) -G (x4 J3y)

+ u(ym‘im)px - u(&m + xm)py + VEM + VS (4.19)

where VS can be written as

7. P \2 P 7
v - -p2{|3(1e23) _ 1 2 14713
s 2\ r 2 Y14 * 2
13 r
13
7.7\
5 (714 13 3 2 6
2< r13> -3 T4 + O(m’) (4.20)



The first pair of square brackets encloses the gravity-gradient terms.
Using Egs. (4.13) and (4.14), x and Yo and their derivatives

xm and &m can be expressed up to fourth-order as (the eccentricity is

taken up to third order only)

x = xml + xm2 + xm3 + xm4 (4.21)
where
X 1 = —eCe
e
= e2 + ezc lé emC - mC
m2 = 20 20 -6 20
e s e s
= L eSC - 2 eSC + = em C
*n3 8 ° e 3 36 0
€ e e
5 3 2
* 36 ™ C6 40~ 8 ™ %26 -0
s e s e
i m C + 15 U C
T 16 i1
16 295 1 r3B QS
_ 25 .4, _ 6% a4 159 4
*ma = 256 40 ] 26 256
s s
ST CIU T ¥ G
16 r3B GS 64 r3B SQS
Ym Z ¥m1 Y Y2 Y Yus * Y4 (4.22)
where
=2
ym1 eSee
1 2 15 11
Y2 T 7 € Sy *F My g *E ™ Sgp
e e
= lg 3S - 1 ess + U em S
Ym3 T 12 36 2 6 16 20 +0
e s e
+ emzs + 22 mSS - li I S
16 20 -0 12 20 8 r 6
s 3B s



m4 256 46 72 26 32 r3B 36
9 m”
8 r3B es
.. . . . 4.
xm xm1 + xm2 + me + xm4 (4.23)
where
ml eSe
e
X _ =-e8§ + — emS 22
m2 20 8 20 ~g T M Syg
e s e s
. 27 1 3 15 2
*n3 =8 ©50 “8°5 16 ™ 530 40
e s
7 2 3 2
T8 "0 -0 T2 "%
e e
N 13 m3 15 m
3 26S 16 Tan Qs
2
i =.25.4, T4 75 w7
md 64 40 9 26 64 r 36
s 8 3B s
33 p2
"% v %o
3B s
and
Im - ym1 * ym2 * ym3 + ym4 (4.24)
where
. .9
yﬁl eCG
e
o 12 e L2
Ym2 2 % C29 7 26 -6 1 26
e s e
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Substituting Eqs. (4.15) and (4.21) to (4.24) into (4.19), approx-
imating C by 1 + m2/6 to eliminate the constant coefficients of
(x + Jﬁy) terms, and keeping up to sixth-order terms lead to the fol-

lowing expansion for the Hamiltonian R:

4
z R (4.25)
n
n=0
where
1 1 2 2
R, = E(p +p)+ (yp, = %) +§ (x* - 5y - 6J3Uxy)
2 2 2
- f% m (x + 3y + 2J§ny)
U 2 3
R1 = SJ— (x y+y ) + 16 (33xy =~ 7x )
3m2

- [(x - \/éy)Ce - (y + \/QX)Ses]

S
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- V| 3 37 4 _123 22
273 128 * 64

3 2 2 2
- gD [(x -y )CZGS 2xyszes:|

{(ym2 x - szpy) - (xmsz + ym2py)
3/3 ) (
- 2y - (2 A
* (ymz 2 *m2/Y *n2 * 2 ym2> *

3 2 2
+ 3 [(lly - 7x )Xml + 22xyym1]

343

T “[Xyml + yxml]}

1 2 3 4 5
R3 = 358 [:[3(960}( y = 285x"y - 33y )

5 32
+ 23x - 430x y + 555xy4]

3 2
= om [(3;: + \fSy)ce

i6 r3B

- (Bx + 5y)se ]
S

s

+

H {(ymBPX - Xm3py) - (Xm3px + ym3px)

33 ( 343
* (ymS T T2 xms)y - \#xps f 5 yms)x

3 2 2
+ 3 [(lly RREIRE S 22xyym2J

3y ( + )
T MY t YR
3 2 2
+ 3 p[(7x - 11y )Xml - 22nyml}}
3N3 3
m;[—\é_(xy+y)+—-(33XY‘7X)]

64

2U(5xy—9xy)+ -~ Xy -



5 5
R = —— [J3(294x°y - 420x°y° - 714xy°) - 331x° + 6105x y>
4 1024 :
- 7965x°y" + -383y6]
2
- H_ (x - 5\8y)Cc,, - 3(/3x + y)s
8r 6 2}
3B . s . s

e (ym4px - xm4py) - (Xm4px + ym4py)
33 33
+ <ym4 T T2 Xm4>y - <2xm4 * 7 ym4>x

2 2
Blly - 7x )xm3 + 22xyypg

3\3
2 “[xyms " yxms]

2 2 l
- - 22
5 [(7x 11y Dx ; Xyy 2_}

+ +
wlw

+
ol w

3 3
= |32 Gxv - %y o+

+

128 ° T ez * Y 128

mZ [5J3

37 4 123 2 2 3 y4]

The "unperturbed" Hamiltonian RO in the above equations includes,
for convenience, all terms quadratic in x,y,px,py with constant coeffi-
cients. The corresponding terms from the solar gravity-gradient poten-
tial were left in the perturbing Hamiltonian in Ref. 12.

Because R invnlves the mass ratio p in its coefficients both
by itself and in combination (1-2u) = U and because R0 involves
only (1-2u), this combination is treated as a numerical value of zeroth-
order, and p 1is treated as a numerical multiple of m [i.e., O(m)] as

is e. ©Note that the region of convergence in the above expansion is

the interior of the intersection of the two circles

2
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2
(x - %) + (y + \/1_3/2)2 22 (4.26b)

Finally, the equations of motion take the canonical forms

y =R p._ = -R 4.27)
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Chapter V

TRANSFORMATION TO THE STANDARD FORM

Chapter 1I described a method of solution that will be applied to
the present problems. In applying thiz method, a new set of variables
must be used to reduce Eq. (4.27) to a standard form similar to'Eq. (2.39)
or (2.41). To obtain this standard form and to solve the Hamilton-Jacobi
equation (2.37), it is necessary to separate, by modes, the two harmonic
oscillators that make lip the expansion for Ro of Eq. (4.25). Also, to
introduce the small parameter m 1in the expansion of the Hamiltonian, it
is desirable to rescale the physical coordinates (x,y) and the gener-
alized momenta (px,py) so that the rescaled variables are of O(l) in-
stead of O(m) and, thus, satisfy the Hamilton canonical equations with
respect to a new Hamiltonian H = R/m2. This rescaling process gives
rise to the appearance of the factor mi as a coefficient of Hi =Ri/m2

First, consider the system described by the "unperturbed" Hamiltonian

1,2 2 1 2 2
- = - — - — T
Ry =5 (P + Py) + (yp, xpy) +3 & 5y 6./3Uxy)
3 2 2 2
T (x + 3y + 245ny) (5.1)

The corresponding equations of motion are

X = = 5.2
X = Rop P+ Yy ( a)
X
v = R = - X (5.2b)
v Op py
y
. 3.3
= - = - Z +————U —m + A/3Uy) 5.2¢)
P, ROx py 4 x y+3g (x + f3Uy (
3\[3 3Jé
. _ - - 2 Y 348 2 + ~3Uy) 5.2d
B ROy P, + 4 vy + Ux + (Ux + 3Uy ( )

which are equivalent to the system of second-order differential equations

¥
¥ - 2y = 9L (5.3a)
ox
.. . ou*
+ 2% = (5.3b)
y dy



* 2 2
where U =3/8 (1 +m /2)(x2 + 3y + ZVEny).

The characteristic equation is

2 2
JE <1 _ g m2> w2 %; u( - u)(l + %?) =0 (5.4)
in which the solutions are the eigenvalues
wo=x 0.949313 (5.5a)
w, = & 0.300684 (5.5b)

therefore, the linearized solution is stable. Note that the stability
of these equations occurs even though the effective potential energy

[—U*(x,y)] has a maximum rather than a minimum at L,; this stability

4,
depends on the influence of the €oriolis acceleration which gave rise
to the terms X and ¥y in Egs. (5.3).

To obtain the standard form of equations, the stationary canonical

transformations
q = (ql,qz) (5.6a)
p = (p,,b,) (5.6b)

are introduced to satisfy the Hamilton equation of motion with respect

to a Hamiltonian H = R/m2, and they represent uncoupled motion in the
form of independent simple harmonic oscillations having the eigenvalues
w, and w as frequencies. The linear equations of transformation can

1 2
be written as

5] [+
1
q y
2
_ = J (5.7)
p1 px
p2 py




where the Jacobian J is a 4 X 4 matrix that satisfies the condition

wls®

J®0JT = (5.8)

E]

In view of Eqs. (2.22), (2.23), and (5.8), the new set of variables

satisfies Hamilton's equations of motion with respect to s Hamiltonian
2

H = R/m”, as desired.

The inverse of the Jacobian J was found to have the form

_
K K
2 2
0 0 L wim -2+
w 1 w 2
1 2
K K
1 2
1 2
~1
J =
K K
2 2 1 2
—le(w14-b—2) —K2w2(w24-b—2) - - ==
1 2
K K
1 2 2 2
K, W) K, nwy = (b - wl) — (b wz)
1 2
(5.9)
where 2
a-g 1+.In_
! 2
9 m2
b:z 1+—2_)
3/3 2
===yl + —
K, = i=1,2
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In terms of a and 5, the Hamiltonian H0 becomes

H =

2 2_2
o ) (5.10)

_2 m2_2) _ l(- u
(pl + 9% 2\Py T ¥y

Do =

and its nondefinite form is associated with the fact that L4 is a maxi-
mum rather than a minimum of [-U*(x,y)], as noted earlier.
With reference to Eq. (2.37), the solution for the two harmonic

oscillators that make up the expression for HO can be given by

q, = |—= sin B (5.11a)

q2 = (5.11b)
Bl = (5.11c)
D = - a -

p2 2w2 o cos Bz (5.114d)

~

where O& and Ei are the action and angle variables, respectively,
associated with H. Substituting these equations into (5.10) obtains

the simple expression

:a-'& .

H0 wl 4 wz o (5.12)
Therefore,

B - H~ = A = -H~ =0 .

Bl Hoa wl 1 HO5 (5.132)
1 1

B =H~ = - = -H~ =0 .

Bz HOa2 wz o HOBZ (5.13b)
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The solutions to these equations are simply

B = wt o = ]
Bl wy + Bl O& O& (5.14a)
'52 = _wzt + ;32 a2 = a2 (5.14b)

where O& and 51 are the four constants of integration.
The solution of Egs. (5.3) is obtained through (5.7) and (5.11).
. - . -1 . : .
After evaluating the numerical coefficients in J ~, this solution is

given in terms of 5& and Ei as

-—x —_ — — r — . —
x 0 0 2.078779 5.658032 JZw o sin B
m 11 1
A4 -1.249989 1.44993 -0.83679 -3.064483 2w2a2 sin 'éz
m
P = ~
—m’i -0.723424 0.251348 0.83679 3.064483 2w, & cos B
) _ -
= 0.794376 -0.921442 0.892148  5.22062 2w O cos B
m _J 27 2
N I | .
(5.15)

The particle trajectories in the xy plane, corresponding to each
of the two coplanar modes are ellipses with major axes at fight angles
to the vector ?1L4 and with a thickness ratio (minor'axis/major axis)
of approximately 1:2 for mode 1 and of approximately 1:5 for mode 2, as
shown in Fig. 8. Motion proceeds in a retrograde direction. The com-
plete unperturbed xy motion consists of a weighted superposition of
these two normal modes, and, in general, is quasi-periodic.

The standard form of equations now can be obtained by substituting

x,y,px, and py of Eq. (5.15) into H = R/mz. Use of (5.14) yields

%17 H (5.162)



4 n
2 m
Bi = Z - Hnai (5.16b)
n=1
. . 2 . .
Appendix A defines H /n! = R /m , in which A, denotes 2w ., B
~ n n o i i i 1
denotes Bl, and B2 denotes —52. Also, the substitutions
W= 0.162440 m (5.17a)
1 2
— = 0.457357 m (5.17b)
¥'3B

have been used. The ratio e/m 1is retained, however, as an adjustable

parameter for later comparison with Ref. 14.

PERIOD 2w/w,=28.8 DAYS

PERIOD 2 7/w,=91 DAYS

X

1 :5(THICKNESS RATIO)

Fig. 8. TRAJECTORIES OF NORMAL MODES.
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Chapter VI

THE LONG-PERIOD HAMILTONIAN AND THE ELIMINATION OF TIME t

This chapter carries out the second step in the method of solution
outlined in Chapter II. For this purpose, Eqs. (3.37) and (3.38) are
used to define the Wn successively to eliminate all short-period terms
from the Hamiltonian K. This long-period Hamiltonian will contain
slowly varying trigonometric terms of angular frequencies wl—ws, 3w2—w1,
wl—we, and combinations thereof.

Because of the presence of two distinct external frequencies W
and we, the resulting differential equations will be complicated;
therefore, an attempt to investigate the eccentricity effect is made by
eliminating all trigonometric terms containing we. This elimination
was suggested by the fact that the response of the linear system to a
small eccentricity-forcing term is an exact imitation of the moon's
fluctuation about the "mean moon"; i.e., a possible motion is such as
to form an equilateral triangle with the instantaneous earth and moon
in their plane of relative motion. This well-known fact [Ref. 8, pp.
587-602] is not confined to only small eccentricities. The justifica-
tion for removal of these additional trigonometric terms lies in the
nonappearance of excessively large coefficients of (e/m)n in the re-
sulting computations. It should be added, however, that because of the
limitations on computer storage, the inclusion of (e/m) was terminated
at (e/m)3 and at K3 instead of K4.

Adopting the above policy, the long-period Hamiltonian K was found

to be

4
m
K:z;K (6.1)

where

K =20

|~
=
l

0.028726|E‘11 - 1.816528 Ziﬂ; + 0.276550 Z;

[\*]
N
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-

-2
+ |1.213685 5, 5 o, - 2.148727 C, 5 g )] A
| 1 s 1 s
[ - -3
- |0.959853 s_.- = + 7.168701 C_- = |A.A
| 3B,-B, 3B, Bl] 172
1 3 -
37 Ky = - |0.146701 sz, + 0.398984 C; ] A
L 1 s 1 s
0.271807 S_ - - 0.672102 C_ - a2
+ e 2(B,-0 ) : 2(8.-6 )| "1
1 s 1l s
2 2
- -2
+ 0.081621 (3) A% 4 1.487332 (3) A
m/ 1 m/ 2
1 -6 -4-2 -2-4
57 K, = -0.136967 A  + 1.276611 A A - 4509.578 AJA,

- - =2
+ 104.9922 Ag + 20,0769 A; - 29.62918 A]

+ 1.04752 Ki + 38.85197 Biﬁ; + 110.3419 A

2
+ -958 7131 S + 6217.148 C ]3323
. "__ . "'_1_3
] 3B,-B, 3B,B, |12
[ = =5
+ |2659.185 s.- - - 3148.168 C.- = | A, A
i 3B,-B, 3B, 1] 172
- 6.579912 Sg .g - 0-5720766 Cy . | A
1 s s
-2
+ 10.82831 § - - 2.639881 C_ _ A
2(B;76g) 2(B; 6| 1
- |38.82468 s_ - - 15.97099 C_ = At
: 2(B.-0 ) . 2(B.-6 )| M1
1 s 1 s
185.4023 S_- = 115.3682 C.= = 3RS
* ' 38 +B_-20 11O 3B_-B.-20 | “1%2
2T g 2 P17

74



3B,-B

+ |1.8914 S,- 5 + 36.89038 C_ = = ALA
[ 5, 5,75,

and the corresponding Wn are defined in Appendix B. In the above

relations, Ki denotes lew 5& and B

1 B denote wlt + Bl and

1’ "2

wzt ~ Bz, respectively.

Equation (6.1) shows that the explicit dependence of K on time ¢t
comes about through the presence of the slowly varying trigonometric
1 2 1’
This explicit appearance of the time terms can be eliminated by means of

. . - * *
a transformation to a new canonical set of variables O& and Bi, de—

. ; - - - W, -2W
terms with angular frequencies W ws, Z(w1 ws), 3w _~Ww and 3m2+ 1 2 s

fined by
* - -
B]_ = Bl - es = (wl"ws)t + Bl (6.23.)
* — -
= - B = —3&) .
3B, 6, 3/.2 (ws It + 352 (6.2b)
so that
B, ~ 3B © 4 3B
1~ B2 = Bl + 62 (6.3a)
and
= - * *
B 3B -2 = - 3 .
1 *+ 3B, es Bl 62 (6.3b)

The conjugate momenta a: are obtained by the introduction of the

generating function
s—a*(t E)+a*(ot+E) (6.4)
=\ttt h 2 \% 2 .

where
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As a result,

- *
o, = — = 0, (6.5)

oS
1 = 1
aai

*
The transformed time-independent Hamiltonian K is given by

K =K + St = K + o9+ 02 o (6.6)
* *
and Qi’ 61 are determined by

é# *
5 = =K x (6-7a)

i

. ¥ *

Bi = K (6.7b)

o

However, these equations, in general, cannot be integrated in terms of
elementary functions and, except for some special cases, their solutions
must be found with the help of numerical methods.

Equation (4.4b) can be directly integrated by employing these numeri-
cal methods; however, this is a complicated task, requiring much time.

It is also difficult to perform because of the possible accumulation of
large systematic errors.

The numerical integration of Egs. (6.7) does not present difficulties
because only amplitude and phase appear and not the oscillatory functions
of x and y. To obtain a complete picture of the process, it is suffi-
cient to calculate a small number of points along a comparatively "smooth"
curve, which simplifies the integration. On the other hand, in the direct
integration of (4.4b), not only an envelope but direct sinusoids must be
determined.

This investigation is interested only in obtaining special solutions
of Eqs. (6.7) which lead to periodic and quasi-periodic orbits. These
orbits are defined by equilibrium points. Such points in (O:, 5:)-
space are determined by looking for solutions to (6.7) in the form of
. % o %

LT 0 and Bi = 0. Once such points are located, it is necessary to
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investigate the type of equilibrium that exists and to identify those
that are stable and unstable.
The search for these equilibria is facilitated by switching over to

a set of rectangular coordinates defined by

Q = '2()) a sin 5 6.8a
P = ‘2 [0 co B
. W, s . (6-8b)

where i = 1,2. Note that Qiﬂui and Pi define a canonical set of
coordinates and momenta with respect to K*.
Substituting a& and Ei in terms of Pi and Qi in Eq. (6.1) and

.X_
using (6.6) lead to the following expression for K

4 n

~ *

K = Zx (6.9)
n. n

where

1 * 2 . 2
o7 K2 = 4.418708 Ql + 2.42737 QIPI + 0.121254 P1

+ 2.292988 Q; + 2.292988 Pg

2

+ 0.028726 Qi + 0.057451 QfP1

4
+ 0,028726 P1

a 3
+ 0.2765502 Q, - 7.168701 Q.Q,
0.959853 QOP. + 0.5531008 QP> ~ 2.879588 QoD
: QP + 0. Py g QPe%y

2 2 2 2 2
+ 21.5061 Q2P2P1 1.816528 Qle ~ 1.816528 Q2P1
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+

4=

+

-

2 2 4
21.5061 . -0.
506 QszQl + 2.879558 Q2P2P1 +- 0.2765502 P2

2 2
Q

3 3
] - . -1.81
0.959853 P,Q, - 7.168701 P P 6528 P,

2 2
1.816528 P2P1

0.672102 Q? + 0.543614 QlP1 - 0.672102 Pi

2
e 2 2 2 2
(E) [0.081621 @] + P)) + 1.487332 (q, + Pz)]

0.146701 Ql - 0.398984 P1

-26.98928 Qi + 1.65662 QlP1 - 32.26905 Pf

2 2
20.07690 (Q2 + P2) - 1.579912 Ql + 0.572077 P1

4 . 5 5
104.9922 Q2 3148.167 Q2Q1 + 2659.185 Q2P1

2 4
o, *+ 7977.554 Q,P,Q

4
314.9765 Q,P 5PoQ

9444.503 Q;PZPI - 4509.578 ngf

4509.578 Qng + 110.3419 Q:

3.2 3
6296.335 Q2P2Q1 - 5318.367 QzP:P + 6217.148 QSQ?

=

2 3
P, - .
1 78.47181 Q2Q1

N W

958.7131 QngP + 6217.148 Q°Q

1 1

958.7131 QgPi + 187.2936 QSP1 + 314.9765 Q;P;

2_2 2 3 2.2 2
. . P - .
5318.367 Q2P2Q1 + 6296.335 Q2P2 1 9019.156 Q2P2Q1
2.2 2 2_2
9019.156 Q2P2P1 + 220.6838 Q2P2
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2
18651.44 Q,P p

2. 3
] P
2876.139 Q,P,Q; 29, Py

2
- 550.
50.5324 Q2P2Q1

=N

2876.139 QngQlP

18651.44 QiPsz ~ 456.7756 QngP1

2
1.276611 Q2Qi + 2.553222 QfoPf

140.0567 Q;Qf - 521.3286 QngP1

2 4 2
. ~ 62.
1 276611Q2P1 2.35282 Q P1

NN

4

9444.503 Q2P2Q1 P

N B
-

~ 7977.554 QZP

N

18651.44 QP

0 FoQ

NN
How

2
- 2876.139 Q,P,Q|P

N

1

2 2 2
18651.44 Q,P,Q P, + 235.4333 Q,P.Q,
2 3
2876.139 Q,P P, - 561.8808 szgpl

6 5 5
104.9922 P2 ~ 2659.185 Ple 3148.167 P2P1

2
4509.578 P4P

4 3.3
5F1 + 110.3419 P2 - 958.7131 P2Q1

3 2 3 3
6217.148 P2Q1P1 + 183.5108 Ple + 6217.148 P2P

W

152.2585 P3P + 1.276611 PZQ: + 2.553222 P;Q

21 2 P

=N
Ll v}

2 2 2 2 4
140.0567 P2Q1 ~ 521.3286 P2Q1P1 + 1.276611 P2P1

62.35282 P;P2

6 4 2
, - 0.136966 Q - 0.410900 q P]

17.0185 Q: - 77.64935 Qipl =~ 0.410900 QiPi

4
2.095039 prf - 77.64935 lef - 0.136967 pf - 14.92347 P,
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Chapter VII

PERIODIC AND QUASI-PERIODIC ORBITS

This chapter carries out special solutions to the main problem, as
a partial completion of the last step in the method of solution. Section
A obtains the stationary solutions (or equilibrium points), and Section B
identifies the stable from the unstable ones. In Section C, the physical
coordinates x and y are computed as functions of time, and the result-

ing stable periodic orbits are plotted.

A. Determination of Equilibrium Points

The equilibrium points (Qi’Pi)j are obtained from the solution

of the algebraic equations

K = K = K =K. = 0 (7.1)

Because of the terms in K_, which are linear in P (arising

3 1’ 9
from the higher order solar perturbation term with the factor 1/

rBB)’
the origin is no longer an equilibrium, but a nearby equilibrium exists.
In search of this nearby equilibrium solution, the linear and quadratic
terms in Pi and Qi of Eq. (6.9) are kept, which leads to

K'=cCQ>+CQP +C.P
=549 2971 T Y3

cql+cP+c c.p (7.2)
17 C8 T 55, 691 * .

71

where

2 2 4
C, = 4.418708 m + (0.672102 m3 + 0.081621 m e) - 26.98928 m

C, = 2.42737 m2 + 0.543614 m3 + 1.65662 m4

2
C, = 0.121254 m~ + (-0.672102 m3 + 0.081621 mze) - 32.26905 m4

3
2 2 4
C4 = 2.292988 m + 1.487332 me” + 20.0769 m
C5 = C4
3 4
C6 = ~0.146701 m - 1.579912 m
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. 4
C7 = -0.398984 m3 + 0.572077 m

In view of (7.2), Eq. (7.1) yields the equilibrium solution P2 = Q2==O

and (_Pl,Ql)1 as given in Table 1.

Table 1

FIRST EQUILIBRIUM SOLUTION FOR VARIOUS ORDERS AND ECCENTRICITIES

Third Order
Second Order Fourth Order
e =20 e =0.0549
P1 0 -0.049689 ~0.050364 ~0.022543
Ql 0 0.014951 0.0151235 0.008761

With reference to Egqs. (6.2), (6.8), and (7.2), the first equilibrium
corresponds to a one-month periodic orbit whose stability is essentially
the Mathieu-type Hamiltonian of Eq. (3.77). This Hamiltonian is not def-
inite as a quadratic form in (Pl,Ql); as a result, mode 1 (or a faster
mode) is parametrically excited, and the periodic motion corresponding
to this small (Pl,Ql) is necessarily unstable. The monthly position
fluctuation in response to the higher order solar perturbation is compara-
ble in size to the direct gravity-gradient twice-monthly fluctuation (see
Table 4).

In addition to the first equilibrium, eight others were found and
constructed as a power series in m in the form

i=1,2

2
(Pi’Qi)j = (Py0Q0) + m(Pil,QiI{j+ m (PiZ’Qiz)j 2<j<o (7.3)

Substituting Eq. (7.3) into (7.1) and equating to zero the coeffi-

cients of m"  lead to the following equilibrium solutions:

1) e=0
2
(Pl’Ql)Z = (1.7946,- 0.4718) + m(3.7021, ~0.,9113) + m (-18.0202, 60.9256)
=0
(PZ,QZ)2
(P;,Q,), = (-1.79468, 0.4718) + m(-2.8380, 0.7349)
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+ m2(12.6714, -59.2286)

(PZ,Q2)3 =0

(p,,Q,), = (2.3026, -0.6053) + m(6.6419, -1.6738)

+ m2 (15002.25, -3811.372)

(Pz,Q2)4 = (~0.3076, -0.0127) + m(-1.3886, -0.0544)
2
+ m (-4782.425, -209.4033)
(Pl,Q1)5 = (-2.3026, 0.6053) + m(-5.4080, 1.3996)
2
+ m (-15011.63, 3814.135)
(P2,Q2)5 = (0.3076, 0.0127) + m(1.1314, 0.0459)
2
+ m (4784.648, 209.5115)
(Pl’Q1)6 = (Pl’Q1)4

ik
'
vl%

2 2

IS

(P1,Q), = (P19,

2 2 /[ 1 A3
(8,00, = ()2 + @] <+ > - 2)
(Pl,Ql)S = (Pl,Ql)S
_ 2 2 (18
(Pz’QZ)S = [(Bg + Q) ( 5 2)
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(P,Q g = (Pl’Ql)s

[ .2 2 1 3
(Bylg + (@) (’ 2 - 2)

(®,,Q,)

(2) e = 0.0549

(1.7946, -0.4718) + m(3.5027, -0.8589) + O(m>)

]

(P,Q),
(Py.Q,), = O

(P,,Q), = (-1.7946, 0.4718) + m(-2.6381, 0.6825) + 0(m?)

1l
o

(P1Qy) 4

(P,Q,), = (2.3026, -0.6053) + m(-1.5310, -1.2441) + 0(n?)

(Py,Q,), = (-0.3078, ~0.0127) + m(-1.2441, -0.0484) + 0(n)

(P,,Q,)5 = (-2.3026, 0.6053) + m(-4.8615, 1.2567) + 0(m?)

2
(P,,Qy) = (0.3076, 0.0127) + m(0.9874, 0.0399) + 0(m")

With reference to Eqs. (6.2) and (6.8), the first term in the above
solutions resulting from the second-order analysis yields, for equilib-
ria 2 and 3, a monthly motion in phase or 180° out of phase with the
sun. Both have the same size and are of larger value than those in
Ref. 12. The difference must arise from the inclusion of the m2 terms
in RO of Eq. (5.1).

Equilibria 4 through 9 correspond to three-month periodic orbits,
60° apart. Each series of three (with spacing of 120°) forms a family
of the same size, as shown in Fig. 9; therefore, only one from each
family is considered as a candidate for this analysis.

The inclusion of the first power of m in the calculation of

(Pi’Qi)j now gives two slightly different magnitudes that correspond
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to two slightly different sizes for the semimajor axis, depending on
motion in or out of phase with the sun. The inclusion of the second
power of m yields a slight decrease in the magnitude of equilibria 2
and 3 and a drastic increase in 4 through 9, indicating the nonexistence
of such equilibria. This is possibly caused by the fact that the corre-
sponding orbits are so large that sections of them lie outside the re-

gion of convergence defined by Eq. (4.26).

B. Stability of Equilibrium Points

The stability of the slow variations around the periodic and quasi-
periodic equilibrium motions can be determined by setting up the expres-
sion for SK* by taking small displacements OP and 0Q around the
equilibrium values (Pi’Qi)j' Because fourth-order corrections for
equilibria 4 and 5 are too large, the stability is investigated using
only third-order corrections. Because (Pi’Qi)j are equilibrium points,
the coefficients of the linear terms in 8P and ©Q must vanish, and

*
the resulting ©®K , for the first three equilibria, takes the form

2 2 2
5p. & 5 5 ) )
Pl Ql + 036Q1 + c4 P2 + 05 Qz (7.4)

* 2 2
= 6
BK m (Cl P1 + C2

where Ci are given for each equilibria, as seen in Table 2.

Table 2
NUMERICAL VALUES OF C, FOR DIFFERENT EQUILIBRIA Ej
7rci N C, Cq C, C,
E 0:6;;98 2.468033 4.468982 4.405318 4.405318
E, 0.813874 2.215314 4,760572 -5.884246 -5.884246
E, 0.7731718 2.227761 4.745097 -5.440188 -5.440188
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*
For the equilibrium to be stable, 38K should be definite, i.e.,

2
40103 > C2 (7.5a)

C4C5 >0 (7.5b)

In this case, any disturbance in mode 1 (Pl’Ql)j will result in oscil~

lation around the equilibrium of a period

T (7.6a)

m w 4%103 ~ C /4

and any disturbance in mode 2 (P2’Q2)j will result in oscillation with

1 (7.6Db)

From Egs. (7.5) and (7.6),
Elz unstable

47 mo T, = 42 mo

Ez: stable T

49 mo T, = 45 mo

E3: stable T
For equilibria E and E (if they exist),

4 5

2
E,: BK* = 1.120477 8P| + 2.012351 8P, 0Q, + 4.705913 aqi
2

5P - 1. 5 ]
+ 4.62852 5P 8P, - 1.355016 OP,5Q, + 12.44027 5P,

+ 1.061331 5Q,0P, + 3.28021 8Q,0Q, + 4.045434 5Q,0P,

- 36.9593 aqﬁ
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E_: .0K* = -34.52581 aqg + 3.808855 5Q,5P,

+ 3.033715 5Q,5Q, + 0.9892793 8Q,5P,
2

+ 11.61883 BP, - 1.277582 5P_5Q
2 2"

+ 4.351618 5P 0P, + 4.698642 BQf + 2.036076 BP, 5Q,
2

+ 1.067101 BP]

As a result, OK¥, for both E4 and E5, is not definite in mode 2,

i.e., P2 and Q2; therefore, they are unstable equilibria (if they
exist).
It is possible to take advantage of the fact that the stable and

unstable equilibrium points are close to each other (by third-order

analysis) and that instability occurs through mode 2, i.e., Pz and
Qz. It is, thus, of particular interest to determine the extent of
*
the stable region around E2 and E3 by expanding K up to cubic
*
powers in OP and SQ* around E2 and E3:
* 2 2 2 3 2
ok = c, (5 )__<5_5> .
K C7 P2 + 6Q2 3 CS P2 36P2 Qz (7.7)
where, for E2,
C7 = -5.884246 C8 = 23.05297 (7.8a)
and, for E3,
c7 = -5.440188 CS = =22.33889 (7.8b)

In addition to the stable equilibrium at the origin, the associated
contours in the 6P2—8Q2 plane have unstable equilibria at (C7/CS,0)
and (-1/2 C7/08’i N3/2 C7/CS)' which form the vertices of an equila-
teral triangle, as shown in Fig. 9. The straight lines through these
vertices are the separatrices corresponding to SK* =1/3 C?/Cz so that

only the interior of this triangle leads to bounded (6P2,6Q2) motion.
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Fig. 9. STABILITY REGIONS IN THE 6P2,5Q2 PLANE NEAR THE
EQUILIBRIUM POINTS.

This approximate analysis has not taken into account that the unstable
(6P1,6Q1) equilibrium values are larger than the stable ones; never-
theless, some idea is obtained about how small 5P2 and 6Q2 of mode

2 must be to avoid the eventual wild divergence of the orbit.

C. The Physical Coordinates

The physical xy coordinates can be obtained in terms of a&
and Ei by using Egs. (3.6), (3.7), (3.26a), and (5.15). Substituting
ag and éi in terms of Pi and Qi and keeping only the influence

of W1 and W2 obtain, for £ =x,y,

9
f = }“ a, C + b.S,
- ] 8
i=o

+ 312029 0 7 blzs26 -6 (7.9)
s e s e
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where

2 2 2 2 2 2
a_ = m EPi + Ql)c4 + cS(P2 + Qz)] + e me,

»
I}

3 2 2 2 2
1 = MlegPy - 5,Q) +m {' S14% Py + Q) + e Pp(P] + Q)

2 2 2 2
* 7 Epl(Pz - Q) - 2Q1P2Q2] T S17 [Ql(Pz T Q) 2PleQz]

- 521Q2(P3 -+ QZ) + 021(P§ + Qz)Pz}
b1 = m(czQ2 + ssz) + mB{sl4P2(Pf + Qf)
* °14Q2(Pi * Qf) T 517 [Pl(PZ - Qi) - 2Q11)2“_’22]
- ¢,y [Ql(P; - Qz) + 2P1P2Q2] + 521(132 + Qz)PZ + c21Q2(P2+Q§)}

2
= - ¢ - -
a, =m [ \P1Q2 + Qle)s5 + c5(PlP2 Q1Q2) 237P2Q2

2 2
+ c,I(P2 - Qz)]

2
b2 =m [_CS(PlQZ + Q]_PZ) - 55(P1P2 - Qle)

2 2
+ s7(P2 - Qz) + 2c7P2Q2]

2 2
10%1 oF1 Py + 9

3 2 2
a, = m(clP1 + SlQl) +m [% Q (P1 + Ql) + e

2 2 2 2
+ SlGQl(PZ + Qz) + chPl(P2 + Qz) - lelg

2 3 3 2
* PiCig T Sp03QP, — Qy) + oy (P, - 3P2Q2)]

b, = (--le1 + s

3 2 2 2 2
1Fp)m +m [510P1(P1 Q) - e0Q (B + Q)

2 2
*(PySig T Q%) Py + Q) + s, 4P) + Qe
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+ (P3—

2 2 3
g~ SPa@p)S,q t (3QF, - Qz)czo]

oF
m [56(Q1P2 - Ple) + c6(P1P2 + Qle)]

2
" [se(Plpz Q) - cg (@, - P1Qz)]

©
|

s=m {’ [2P1Q1Pz + - Qf)Qz]sm * [(Pi B Qi)Pz B 2P1Q1Q2] 13
+ [Ql(Pg - Qg) - 2P2Q2P1]S15 * [P1<P§ B Qg) * 2PzQle] 16
+ Q2523 + P2023}

5~ n’ {“513 [(Pi B Qi)Pz B 2131Q1Qz] " %3 [2P1Q1P2 * (Pi 'Q’f)Qz]

T 515 [Pl(Pz B Q§> * 2P2Q2Q1] T Pl(Pz B Q§> B 2P2Q2P1]

+ FoSas ~ Q2°23}

= m2[2P1Q153 + (Pi - Q?)c3 + cg] + m3c24

2 2 2 2
=m [(P1 - Ql)s3 - 2P1Q103 + sg] + s,

3 2 2 2 2
2, =m {512 It(P1 - Ql)PZ + 2P1Q1Q2] + e, [(P1 - Ql)Pz + 2P1Q1P2]

~ 5998 + chzz}

- 3 2 2 2 2
b, =m {512 [(Pl - Q)P + 2P1Q1Q2] ey [(P1 - Q9 - 2P1Q1P2]
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3 3 2 2 3
ag=m [°11(P1 - 3P,Q)) + 8, BQP - Q) + sy Q) °18P1]

3 3 2 2 2
by =m [%11(P1 3PQ)) - Q (3P - Qey,y + PyS g - Q1°18]

2
a,.  =mec,_ +m e(c33 + c28P1 + stQl + °29P1 + 829Q1 + 030P2

10 25

+ Sg0@ *+ C39Py + 53,9)

2
b g = MeS,s + M elsgy = Cualy + Sy0Py + Q) = Sy0F) = C54Q

P - )
+ S30Fp * CgePy + C31%% ~ S31Fy
a = ez
11 - €™ Cg7
2
b11 = em 527
= emz
849 €32
b, = em2 (7.10)
12 © 532 :

The coefficients ci and si for x and y are presented in Table
3.

Substitution of the equilibrium values (Pi’gi)j into Egs. (?.10)
leads to the periodic and quasi-periodic orbits in the form of Eq. (7.9).
The coefficients a; and bi for various orders and equilibria are
listed in Tables 4 through 8. Note that, as expected, the effect of
the eccentricity is a close imitation of the moon motion; the secular
motion of the moon's perigee, caused by the sun, somewhat distorts the
exact eccentricity imitation. The features of the obtained periodic
and quasi-periodic orbits are tabulated in Table 9, and the stable or-
bits are plotted im Fig. 10. Allowing for a 3 percent difference in size,
these orbits are almost indistinguishable from those in Fig. 4 of Ref.

14.
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Table 3

NUMERICAL VALUES FOR c; AND s; USED IN EQS. (7.10)
f=x £ y
i
Ci Sy €3 53

1 2.078779 0 ~0.836790 -1.244989
2 5.658032 0 -3.064482 -1.449433
3 -0.477376 0.054201 -0.410524 -0.42068
4 -2.754069 0 0.7989711 0

5 6.189117 -4.99475 -5.846259 7.468903
6 -4.556632 1.353424 -2.25725 -1.495887
7 9.066064 -3.217712 -15.86619 ~7.255554
8 -27.45219 0 4.785202 0

9 -1.032939 1.335706 1.330059 0.5061397
10 0.984043 12.25133 12.18598 -3.564763
11 -0.036963 -0.502484 0.5260429 -0.1406562
12 -0.662384 -4.659913 5.024582 -1.261261
13 -7.857452 4.552246 0.864563 6.483002
14 3.188846 -98.85581 -12.43194 51.90156
15 14.17146 -1.021435 5.959321 -6.845459
16 13.11474 78.98347 87 .73532 -62.48818
17 | -167.1086 -322.519 152.3395 182.4546
18 0.128523 -0.620743 0.5178337 0.200539
19 19.75492 13.52622 -3.383034 -15.30651
20 -35.05274 -140. 9546 -108.5904 51.57765
21 19.64869 |-1268.607 -197.7113 70.90593
22 -1.359009 -3.329499 0.7789154 1.865039
23 -11.87335 -9.426957 -1.157608 11.04512
24 0.1790439| -0.1758309 -0.083248 -0.112715
25 -6.571491 -23.33596 -11.60792 13.16193
26 3.455698 0 -1.853139 0

27 0.3103889 -0.202524 -0.2781192 <0.012889
28 4.010418 9.30537 -7.196863 12.37255
29 | -31.43699 -17.25999 23.17124 -8.922399
30 17.66468 28.2631 -16.48526 44,58725
31 118.3920 10.57441 -66.68749 -11.49231
32 8.68036 31.37417 14.52541 -18.30503
33 1.069179 3.78897 1.883865 -2.138359
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Table 4

NUMERICAL VALUES FOR aj AND bi USED IN EQ. (7.9) CORRESPONDING TO EQUILIBRIUM E1

€6

e =0 e = ,0549
Second Order Third Order Fourth Order Third Order
f=x f=y f=x f=y f=x f=y f=x f=y
by ! b &y By ®y by ® by 4 by 4 by ot by
(/] 0 1) -.000041 o 000012 ) 0.000009 4] .000003 0 0.000736 ] -.000405
0 0 o 0 0 0 0 0 0 o 0 0 0 0 0
0 ] 0o o 0 0 0 o 0 0 0 [} 0 0 0
0 o 0 -0.00822 |-0.00248 .001878 .005879 | -0.00374 -0.001418 .00068 .002788 | -0.008333 -0.002512 .001906 .00595
0 0 0 0 0 0 0 0 0 [ 0 0 Y [} 0
0 0 4] o 0 0 0 o ] 0 0 o 0 [} ' Q
.0057 | 0,0074 | ,007407 {.002785{-0.0057 0.0074 .007405 .002776 | -0.0057 0.0074 .007407 .002783 | -0.0057 0.0074 . 007405 .002776
0 0 0 [+] 0 0 0 0 0 [} 0 0 0 0 0
] o 0 0 0 [} 0 0 0 0 0 0 0 0 0
0 0 0 -0.00007 0.000012 | -.00001 ~.000007 | -0.,000003 0.000005 | -.000004 |-.000004 |-0.000007 0. 060012 -,00001 -.000008
o 0 0 0 [} 1] 0 ] o 0 0 -0.026271 |-0.095243 |-.047321 .053208
0 0 o 0 o 0 0 0 0 0 )] 0.00007 -0.000046 |[-.000063 {-0.000003
0 0 0 0 0 [} 0 0 [+] 0 0 0.002666 | 0.009637 |0.004462 [-.005623




Table 5

NUMERICAL VALUES FOR a; AND bi USED IN EQ. (7.9) CORRESPONDING TO EQUILIBRIUM E2

v6

e =0 e = .0549
Second Order Third Order Fourth Order Third Order
f=x f=y f=x f=1y f=x f=y f=x tT=y

! by &4 Py ! by bl by ! ®y g ®y ®y 5y &y by

0 |-.053086 o 0.015393 0 -0.07062 [} .020487 [} -.060458 V] .017539 ] -0.068827 0 .019775 [}

0 0 0 ] [s] o 0 [} 0 0 a o (4] 0 0 0

] 0 [} ) [ o [+] o 0 (] ] 0 o 0 1] o

.29078 .111977 | -.03984 -.20909 0.333521 0.140924 |- .033457 -.241539| 0.323038 0.080434 -.068205 ~.21662 0.331245 0,139196 -.03396 -.2397

0 0 [} ] [} 0 0 Q 0 o 0 0 0 0 [\] 0

1] [} ] 0 1] 0 0 0 0 o [} ) 0 [H] [} [}
~-.014226 .003786 .004506 |-.008162 | -0.017066 0.002637 .003485 | -.011769|-0.01621 0.00647 .000424 -.008066 -0.016903 0.0027086 .00354 -.01156

0 0 [ 0 o 0 0 0 o 0 0 1] [+] ) (1] ]

o] Q 0 0o o 0 ) [+] 0 0 o 0o o 4] 00 0
9 .00108 -.00147 .00162 . 00964 0.001571 -0.002103 .002362 -001371 0.000529 |-0.002097 .00218 .000281 0.001541 | -0.002065 .002317 .001345
W) (o] [} [} 0 1} [} 0 o [¢] [} [} -0.042675 -.072047 -.037866 .06184
0 0 0 0 (1] 0 0 [+] | 0 o 0 [} 0.00007 -0.000046 -.000063 ~.000003
0 2] 0 0 0 o o’ [} 1 0 o 0 0 0.002666 0.009637 004462 -.005623
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Table 6

NUMERICAL VALUES FOR a, AND bi USED IN EQ. (7.9) CORRESPONDING TO EQUILIBRIUM E3
e =0 e = .0549
Second Order Third Order Fourth Order Third Order
?=x f=y f=x f = f=x f=y f=x t=y
N a1 bi !1 b1 ay b1 ﬂi bi a1 b1 a1 b1 .1 bi l1 bi
0 | -0.05306 o .015393 0 -0.066341 0 .019246 o -0.058346 Q .016926 0 -.064577 0 .018542 V]
1 V] 0 0 0 o 0 0 0 0 ] 0 (1] [} 0 0 ]
2 0 0 4] 0 ) 0 0 [} ] 0 1] 0 (] V] /] 0
3| -0.290779 | -0.111976{ .03984 .209093 |-0.32357 -0.134154 .035131 .234055 | -0.317379 | -.077617 . 068415 212537 -.321277 -.132489 .035567 .23229
4 [ 0 ] Q a a [ o [} [ o] ] L1} ] o a
5 0 o 0 1] ] 3} 0 0 0o 0 0 1] [} [\] [\] 0
6 | -0.014226 0.003786] . 004506 | ~.008162) ~0.016363 0.00289 .00377 -.010899 -.015843 | 0.006504 . 000666 -.007685 -0.016204 0.002959 .003824 -.01069
7 0 0 1] 0 0 0 1] 0 1] 4] Q [1] 0 0 0 . [
8 4] 0 0 o 0 [\] 0 0 o] 1] 0 0 ] 0 0 o
9| -0.001085 | 0.001473 .00162 -.000964'| -0.001453 0.001938 -.002169 | -.001274 -.000507 | 0.002006 -.002081 ~.000273 -.001425 .001902 ~.002126 ~.00125
10 0 [} 0 0 0 0 0 0 0 (4] 0 ” 0 -.011154 -.116615 ~.05631 .045241
11 0 0 0 o o [} 0 0 0 [} 0 0 .00007 -.000046 ~.00063 -.000003
12 0 0 1} 0- o 1} [} o [} 0 0 o . 002666 .009637 .004462 | -.005623
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NUMERICAL VALUES FOR a;

AND b,
i

Table 7

USED IN EQ. (7.9) CORRESPONDING TO EQUILIBRIUM E4

e e = .0549
Second Order Third Order Fourth Order Third Order
£ =x f=y f £ = t=x |f=y f=x t=y
i ay bi 8y 171 ai b1 ai bi ‘1 b1 a, b ai b1 L bi
0 |-.101902 0 .02787 0 -.155029 0 .041959 0 - - |- - .149179 0 .04026 0
1 (-.157192 .109399 .099365 | -.016458 [-.231881 .23157 .156606 -.058934 - -1~ - .223608 .217287 .150139 |-.05397
2 |-.015475 |~.026744" .008795 .030522 | -, 024402 -.043655 .013038 .048854 - - ]- - .023517 | -.041864 .012676 . 046972
3 .367798 .179783 -.012072 } ~.273109 .439894 .266656 .037075 -.337118 - - 1= - .43817 .258185 .031608 |-.331643
4 ,019491 .000189 .007044 .008584 .031685 .000232 .011483 .013927 - - 1- - .030404 .000222 .011019 .013364
5 . 006467 .007078 -.001882 .002078 .012061 .01329 -.003605 .004942 - - l- - .011433 .012602 -.003423 .00463
6 |[~.019733 .001451 .002632 | -.015236 - .02645 -.00131 .00026 -.0238 - == - .025853 | -,001058 .000464 |-.023033
7 |~.001226 .003582 -.003694 | -.001397 [ -.002497 .00681 -.007248 -.002574 - - |- - .002355 .006456 -.006858 |-.00244
8 0 0 o] [ 0 o] 0 0 - - ]- - 1] 0 0 0
9 .00211 -.002746 .003132 .001826 .0036 -.004619 .005377 .003061 - -1- - .003455 | ~-.00444 .005161) .00294
10 o] Q (l 0 Q 0 0 ] a ojo o .06508 | ~.066999 -.024246] .058075
11 o 0 0 [0} 1] 0 0 0 o oo o .00007 | -.000046 -.000063|-.000003
12 0 0 0 0 o] 0 1] 0 o o0]o o .002666 . 009637 .004462|-.005623
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NUMERICAL VALUES FOR ai AND bi

Table 8

USED IN EQ. (7.9) CORRESPONDING TO EQUILIBRIUM E5

e=20 e = .0548
Second Order Third Order Fourth Order Third Order
f=x f=y f=x f=y f=x =y £ =x f=y

5 a1 bi Bi bi a, b1 a bi a, b N b ai bi ai bi

0 -.101902 0 . 027877 ] -.144349 0 0,039135 o - - [-.138685 0 .03745 0

1 .157192 | -.109399 -.099365 .016458 .216966 -.20432 -.14475 . 04908 - - - .208987 | -.191175 -.138611 +04459

2| ~.015475 | -.02674 .008795 .030522 [-.02258 -.040246 .012174 .045169 - - }{-.02173 |~.038523 .01182 .043358

3)-.367798 | ~.17978 .012072 .273109 |-.426638 -.248888 -.026058 32499 - - }-.420854 }-.240878 -.02108 .31958

4 .01949 .000189 .007044 | .008584 .029217 .000262 .010568 .01286 - - .027985 .000251 .010122 .01232

5| -.00647 -.007078 .001882 | -.002078 |-,010829 -.011957 .003242 | -.004275 - - ]-.010246 | -.011315 .00307 | -.00401

6| -,01973 .0045 .002632 | -.015236 }|-.025095 -.000798 .000782 -.022105 - - ~.024517 | -.000553 .00098 -.02136

7 .001226 | -.00358 .003694 .001397 .00223 -.006103 .006467 .002334 - - .002098 | -.005774 .006104 .002211

8 0 0 0 0 0 [¢] 0 1] - - - 0 0 0 0

9| -.00211 .002746 -.003132 | -.001826 |-.003294 .004211 -.00489 . | ~.002812 - - [|-.003157 .004044 -.0047 -.0027
10 0 0 0 0 0 0 0 0 o] 0 .010224 | ~.12148 -.069 .0488
11 4] [¢] 1] 0 0 o 0 o o] 0 .00007 {-.000046 -.00006 | -.000003
12 0 0 0 [ o] 0 4] 0 0 0 .002666 | .009637 .00466 | -.00562
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NUMERICAL VALUES FOR SEMIMAJOR AXES, SEMIMINOR AXES, INCLINATION TO THE x-AXIS, AND

Table 9

ECCENTRICITIES OF ORBITS FOR VARIOUS ORDERS AND EQUILIBRIA

Semimajor Semiminor Inclination to E;cestricity
; : _ of the Orbit
Equilibrium pe::"d Axis Axis the x-Axis
E,
1 Lunar Second Third Fourth Second Third Fourth Second Third Fourth |Second | Third Fourth
Month Order Order Order Order Order Order Order Order Order |Order | Order | Order
First 1 0 2.29 x 10° | 1.07 x 10° 0 1.1 x16° | 0.5 x 10° - -209.6° | -20.6°| - 0.88 | 0.88
Harmonic
By
Second . 1 0 2.40 x 10° | 2.4 x 10° 0 1.7 x 10° 1.7 x 10° - -30.2° | -30.2°| - 0.71 | 0.71
Harmonic 2
i 3 3
E, | First 1 |8t x10° | 94 x10° 87 x 10° 40 X 10 46 x 10° 43 x 10 -26.7° | -25.8°| -26.5°| 0.87| 0.87 | 0.87
Harmonic
3 3
E, | First 1 |81 x10? 91 x 10° 85 x 10° 40 X 10 45 x 10° 42 x 10 -26.7° | -26° | -26.6°| o0.87| 0.87 | 0.87
Harmonic
First 3 |51 %103 87 % 10° ® 9 x 10° 15 x 105 © -~26.4° | -25.8° - 0.98{ 0.98 | -
E Harmonic
4
Third 1 |105 x10® | 130 x 10° w 54 x 10° 70 x 10° w -24.5° | -22.3° - 0.86| o.8¢ | -
Harmonic
First 3 |51 x10® 79 x 10° ® 9 x 10° 14 x 10° w -26.4° | -25.8° - 0.98| 0.98 | -
ES Harmonic .
Third 1 105 x106° | 125 x 10° m 54 % 10° 67 x 10° w -24.5° | -22,7° - 0.86)| 0.85 | -
Harmonic




0.51

Fig. 10. ONE-MONTH STABLE PERIODIC ORBITS.
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Chapter VIII

SUMMARY AND CONCLUSIONS

Simplified general expansions in the theory of perturbation based
on Lie transforms have been developed. Application of these expansions
to the theory of nonlinear oscillations was outlined, and two simple
examples were presented for clarification.

General formulas for the theory of perturbation based on the Lie
series were also obtained and discussed in relation to those based on
Lie transforms. Computerized symbolic manipulation of some of these
formulas was employed in a canonical perturbation treatment of sun-
perturbed motion near the earth-moon L4 libration point up to fourth
order, idealized as coplanar.

In the absence of the mean lunar eccentricity, periodic orbits
were found by searching for equilibrium solutions. Because of the
higher order nongravity-gradient solar-perturbation terms, the origin
is no longer an equilibrium. A nearby equilibrium exists and corre-
sponds to unstable one-month periodic motion.

The search for other equilibrium solutions led to the possibility
(as in Ref. 12) of stable one-month periodic orbits in phase or 180°
out of phase with the sun. For these orbits, the second-order analysis
yielded semimajor axes approximately 10 percent lower than that in Ref.
14, and a third-order analysis yielded a substantial improved agreement.
Depending on motion in or out of phase with the sun, the analysis re-
sulted in two slightly different sizes for the semimajor axis, both only
about 3 percent larger than in Ref. 14. The extent of the region of
stability around these orbits was found approximately to be the interior
of equilateral triangles (see Fig. 9). The fourth-order analysis, how-
ever, failed to produce further improved agreement but, instead, yielded
orbits about 3 percent too small.

The existence of slightly larger unstable orbits, as in Ref. 12,
is more questionable. The third-order analysis led to three-month un-
stable periodic orbits again in or out of phase with the sun but with

semimajor axes about 45 percent larger than the stable periodic orbits
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for mode 1, and about 80,000 mi for mode 2 (see Table 9). The fourth-
order analysis, however, yielded a totally unreasonable change in these
unstable orbits.

In the presence of lunar eccentricity, the stable orbits became
quagsi-periodic. The effect of this eccentricity on the size of these

orbits was found to be small.
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Appendix A

THE HAMILTONIAN H OF EQUATION (5.16)

<T1.8483 SB 26 " 1.791798 CB _

2
1 s 1 es

B_ +26 B, +26

+ 0.224518 S - 0.854307 C A
1
1 s 1 s

+ <—3.467575 SB 29 4.655926 CB -20
2 s 2 s

+ 1.584059 S - 3.568476 C A
BZ+29s Bz+292> 2

+ (0.616987 8y _g -~ 0-173164 C, g

1 e 1 e

e
-1.2 0.35044 -
1.273558 SB * + 35 5 CB +ee) - A1

1 ee 1
2. - 0.
+ ( 255962 SB -0 0.40764 CB -9
g e 2 e
e
- 3.01758 SB +6 + 0.104242 CB +0 | = A2
2 e 2 e

1. - 0.
4-( 060361 SB 386893 CB

i 1
3
. - 1.883
+ 1.694639 S3B 1.883111 C3B ) Al
1 1
+ (2.459942 S, =~ 0.771045 C
B B
2 2
+ 7.684611 S, - 3.896135 C
2B1 BZ 2B1 BZ

103




, 2
+12.85176 Sy o - 10.00034 Cpp . ) A) A,
1*°2 “81+59
¥ (30.11885 S. - 10.11404 C
B B
1 1
+ 4.718869 S - 0.984863 C
B,~2B, B,~2B,
+ 27.96021 S - 16.20978 C A, A
B, +2B,, Bf@BJ 1 ‘g
+ (}7.46826 S. - 4.283916 C
B, B
2 2
18.45821 S - 7.31473 C AS
A8 3B : “3p_ )72
2 2
~0.2600 + 0.002499
( 60072 S, (5,40 ) 2499 Cy (5 40 )
5 1 s
.04454 S ~ 1.946338
+ 1 2 55.-0) 6 Cam.-6)
1 s 1 s
- 1.304626 S - 0.771988 C A2
) 26 ) 20 |71
s 8,
0. - 0.
+ < 362402 S_ _,¢ 0.088577 C, _oq
1 s 1 s
- 1.115752 )
752 S, ., + 0.137168 C; g )Al
1 s 1 S
+ [6.055805 s - 7.911159 C
- -26
< B1+B2 29s B1+B2 s
- 3.18288 S - 1.247505 C
—~ 2 -
B1 B2+ GS B1 B2+26s
+ 5.14584 S - 4.201294 C
-B ~2 ~B_~
B, -B,~20 B, ~B,-20
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2,272914 sB +B.+20 - 0.3462371 CB +B.+26 A1A2
1 72 s 172 s

\52.576375 Sg 420 " 0.3206347 Cp o9
2 s 2 s
1.70252 Sy _gg 0.6189656 Cy _ng )Az
8 2 s
-4. - 1.5594
<\4 835863 S, (5 40 ) 559442 Cy (g 40 )
2 s 2 s
. - 1.
8.168333 Sy _p ) 712266 Co (g - )
2 s 2 s
13.00419 S, , - 7.69498 C a2
' 20, " ' 2es> 2

(:1.516013 SZB +6 + 2.346225 c2B +0
1 e 1 e

. - 1. 029
0.815141 SZB-—Q 1.13602 C2B -6
e 1 e

e .2
2.331154 S9e + 0.163241 Cee\)ﬁ A1

6.564164 S - 1.678081 C
_p -6 B -
( B1 BZ e Bl B2 6e
0.130888 S + 9.014361 C
B1+B2+6e B1+BZ+6e

5.751182 S - 4.502922 C
B, By 0, B,+B,"0

e
8.317907 SB _p._+0 + 3.760673 CB ~B.+0 E A1 A2
1 72 e 1 "2 e
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+ <10.12954 S2

13.10683 S2B

23.23638 SG

e

+

<—0.1992477
+ 0.1090638 SB

+ 0.025665 SB
1

+ <0.127725 SB

+ 0.028554 S
B2

2

+ (1.156848 S

2.387921 8

0.099664 S
5

+ 0.185356 SB

+6
1

B2—9

+6
e

2

+ 2

S
B1

1—26

+26
e
-26

2

+26
e

-2
B1

-6
e

e

- 3.305373 CZB -0
e 2 e

+ 7.68872 C2B 46
2 e

e

2
.974668 C ) Sa
e m 2

+ 0.233561 C
B1

- 0.251837 C, _,,
e 1 e

e
- 0. Z\ A
0.054184 CB1+296><;> 1

- 0.61
615312 CB -20
e 2 e
- 0.505394 C
B, +26
2 e
2

e

0.231118 SB + 0.696572 CBZ)<;> A2

6 +6 0.3246819 CB _26 46
s e 1 s e

+ 0.657084 C

B,+26 -0 B, +26 -6
1 s e s e

1

+ 0.028683 CB -6
1 e

e
+ 0.028683 CB1+GQ>E A1
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+

1

0.7643255 C

(4'22931 Sp.-20 +6 " B,-26 +0
2 s e 2 s e

5.657922 SB +20 -8 + 0.195455 CB +28 -6
2 s e 2 s e

. .1 2
0.338184 SB -0 + 0.10504 CB -0
2 e 2 e

e
0.437584 S + 0.105042 CB2+6e> . A2

Bz+6e

.720395
4B 1.72039 C4B

<—3.598858 S
1 1

4
2.450025 S - 3.700764 C - 2.037587)!&1

2B1 2B1

- 20.
35, +B 0.00634 Cpp o

628.85189 S
1 72 12

- 16.31672 C
3Bl B2 3B1 B2

14.99572 8

4.810668 S - 26.80242 C
- -B
B, =By B, 78y

3
13.33645 S - 30.22656 C Al A
B1+B2 B1+B2> 172

2B 2B

(:84.10031 S - 128.5832 C
1 1

84.51579 S 81.57057 C

2(B1+B2) 2(Bl+B2)

21.04994 S2B2 - 85.30888 C2B2

18.74859 S - 51.44641 C
2(B1 B2) 2(B1—B2)
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2
1

A
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+

+

1
37 B3 =

3B B,+3B

(—106.6698 Sg - 143.2789 C
1789 17°Pg

5.702514 S - 88.11817 C
Bl—BBz B1—3B2

50.80462 S - 284.7509 C
Bi=By B By

B.+B

3
148.3573 S - 339.5546 C A_A
118y B1+B2) 12

-48. S - .
( 48.53103 4B2 94.67042 C4B2

4
. - . - .130
77.00639 Ssz 314.6975 C2B2 220,13 é)Az

+ 1.802122 C

-1.151769 S
< 2(B2+Gs) 2(B1+QS)

. - 0.5919
+ 0.450898 SZ(B —0 ) 591926 C2(B -8 )
1 s 1 s

20

2
- 1.602668 S ] + 0.163242 CZG >A1

2.390847 C

+({3.425862 S -
- -2
( B1+B2 29S Bl+B2 Gs

+ 2.910867 C

- 5. 992586 S
B -B *29 B -B _'_29
1 2 S 1 2 S

+ 4.238843 S - 0.828276 C
Bl—Bz—ZQS Bl_BZ ZQS

- 6.805
6.805567 SB1+B

+

+ZGS 6.902285 CB1+B +265>A1 AZ

2 2
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- 0.0
87533 CB +6
1 s

+ (?.6138827 SB +6
1 s

+ 1.363265 SB —28 - 0.3070833 CB -26
1 s 1 s
- 0.146701 SB -6 - 0.398984 CB -0
1 s 1 s
- 3. 0. 4

3.539188 SB +20 + 75978 CB +26 A1

1 s 1 S

. - 0.

* (} 164738 SB +0 2340664 CB +0
2 s 2 s

- 8.210705 SB +20 - 0.2075681 CB +26
2 s 2 s

+ 5.68673 8
- - 1.389
B,-20, - 1 38939 C 29,

- 0. - 0.
0.622828 S5 _g 636276 Cy _g A,
2 2 s

+ (—9.476148 SZ(B 0 ) + 5.970895 CZ(B 6
2 s 2 s
+ 6.498857 S _~ 1.587549 C
-6 -0
2(8, s) 2(B, s)

2
2.
+ 2.974667 Cze;>A2

2

2
e\ a2 4+ 1.487332 e
+ 0.081621 |qp 1 . 2) A,

+ -1.056931 8 4+ 6.118156 C
5B1 5B1

- 5.411887 SgBl + 6.277364 C3B1
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CR-1622

- 3.673614

<—22.13612 S4

Sp

1

+ 1.256851 C A5
B1 1

By

+B

+ 64.31532 C
> 4B1+B2

12,7837 3.324871
7 SB + 87 CB

54.86528 S

22,28373 S

38.27754 S

~-219.69 77.37804
( 2 6 SB + 78 CB

2

2B

4B

1

1

+B

-B

2B_ -

1

2

1

2

2

2

2

+ 46.19636 C
2B1+B2

+ 36.11276 C
4B1—B2

4
.98
+ 19,9862 CZBl_B2>A1 A,

1

190.4786 S + 115.2084 C
B1+2B2 B1+2B2
. 9.95
242.069 S3B + 279.9519 CBB
1 1
140.5677 S + 262.394 C
3B1+2B2 3B1+2B2
- 91.,53829 S + 67.79426 C
- -2B
3Bl 2B2 3B1 5
28.41589 S + 7.7686 C A3 A2
B1—2B2 B1—2B2> 1 2
~392.9128 S + 515.0043 C
2 3
( B + B2 2B1+3B2

. . 4
254.8306 SB + 72.2878 CB

2
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254.2159 S3B

110.3925 S

231-3B2

910.5273 S

2

2B

616.7583 S

2B

-1187.942
+ < 1187.94 SB

1397.546 SBl

503.5476 S
Bl

83.62292 S
1

B.-4B

216.489
6 SB1

1

+2B

+4B

-236.9616 S
+ ase. om0 5,

+ 697.7133 SSB

~ 459.3208 S
BZ

2

+B

1—B

1

-2B

+ 107.1796 C3B2

+ 32.1358 C

+ 765.5522 C
2

+ 323.3112 C
2

421.497
+ CB

+ 845.052 C
2

478,8732
+ CB

2 1

+ 27.1759 C_ _
2

2

+ 163.6965 C5B

2 2
+ 294.5327 C
3By
5
+ 133.1324 C A
B2 2

+ other eccentricity terms
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B1+2B

2B1—3B

2B, +B

1

1

2

+4B

4
B1 B2

2

2

2 .3
2B —BZ>A1 AZ

2

4
+ 58.93139 CB1'282>A1 A,



1 2
=5 =(1. -~ 2.3641
o B, <1 75664 sz(Bl_es) 2.364125 C2(B1”es)> Al

+<4u579912 S5 _o

+ 0.572076 ¢, _, >A1
1 s 1 s

6 4 2
+ 5.387558 A1 + 512.545 A1 A2

-68.773
+ < 68.7732 S, _

3.3

+ 110.5201 C ATA
3 -3

,~3B, B, B2> 172

2 4
+ 534.5015 A1 A2

+

5
<—360.6216 SBl_3B2 + 5770.786 CB1—3B2>A1A2

+ 6252.216 Ag

+ other short-period terms
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Appendix B

THE GENERATING FUNCTION W

W, = (%.988491 S5 _pg =~ 2.051196 Cg _

1 1 ZGS 1 29s
- 0.3051412 SE +20 0.080193 CE +20 >A1
1 s 1 s
+ <3.00438 SE 26 ~ 2.23756 CE -26
2 s 2 s
- 1.658921 SE w20 0.736401 CE +26 )Az
2 s 2 s
+ (3.724728 SE - + 13.2713 CE -0
1 e 1 e
e —
+ 0.1801664 SB +0 + 0.654746 CB +6 )1; Al
1 7e 1 e
+ (0.586432 SE -0 + 3.245429 CE -6
2 e 2 e

] B+ 2

+ 0.080404 S— + 2.327486 C— 2 A
B, + e m
2 e 2 e

+ (-0.4075506 5= - 1.116976 c=
By By

0.6612187 S

=3
3§1 - 0.59504 C3§1) Al

+ (~2.564302 s= - 8.181146 C—
By By

2.438221 S, = — - 4.809069 C_—- —
2B1-B2 2B1—B2
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NIH

[

. -2 -
4,547033 S, = -5.616196 C_,—~ — YA A
2B1f32 gBl+B2) 172

<+

-10.65406 S= - 31.72697 O=
By By

- 2.820515 S— _~— ~ 13.56212 C= _—
B,-2B, B, 2B,

10.45333 S— 18.03091 C= .- | A. A2

: B,+2B, : B,+2B, ] "1 "2

+ (-14.24722 s= - 58.09502 c—
By By

=3
8.108981 S3B2 - 20.46243 03§é> A2

+ 1.113381 C

N

0.038859 S_ — -
( 2(B1+95) 2(B1+GS)

2

+ 0.106328 S 1

265 + 2.122627 C295> A

5 _gg *+ 0.402185 Cy _

+ (0.076105 S=
1 s 1

26
s

+ 0.048994 S§i+zes + 0.398525 C§i+295> A1

+ 13.83925 CE +§é_29s

1

+ (%4.60495 SE

B -2
1+B2 Qs

2.934155 SE -B.4+26 + 5.44868 CE B +20
1 2 s 12 s

+ 7.253594 S— = + 2.562956 C= =
B ~B,-20 B ~B,-28,
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0.716004 S

B

(0.399407 S5 _

1

+B2+26s B

2

0.149057 S=
B+

<T4.242274
16.21637 S

1.51004 S

2

S

26
s

<}3.47869 S

e

2

2(B2—95)

e

13.73593 S2§

1

6.786963 SZEi

(—36 .5925 So -

79.85246 S

B

1

62.41576 S—

B

. e
. . . < 6.04 —_ - e
63.38106 S B 40 6.04423 CB B 40 ) A
e 1 "2 e

1

B

+ 6.381915 Cz
1

+ 1.098604 C—
S

zes + 1.197711 C§é+26

- + 8.922069 C
(B2+95)

+ 8.293832 C

=2
+ 24.24634 C265> A2

- 0.0427323 Ce
e

7.791509 C_=

+B2+265)

+0 2B, +6
e 1 e

© * 3.444001 CZE -0
e 1

+ 18.59109 C—

e

20 B2—29S

)?

2(B2+GS)

2

2(B2—Gs)

e —2
) m A1

17879 By -By-0,
- - 29.59782 C—~ =~
+B2+6e B1+B2+9e
= + 14.10607 C— —
+B2-9e Bl+Bz—6e

2
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+ (—65.34663 SZE - + 32.67532 CZE -0
2 e 2 e

- 19.8062 Szg +0 + 118.8623 CZE +6
2 e 2 e

-2
A2

glo

e

+ 190.2572 S - 0.1087173 CQ )
e e

+ 10.2460315 S= + 0.2098861 C—
B1 B1

+ 0.051986 SE -20 + 0.104638 C'ﬁ -26
1 e 1 e
e 2 _
- 0.085632 SE +20 " 0.008727 CE +20 )(E) A
1 e 1 e
+ <2.316622 S= + 0.7686418 C—
B B
2 2
+ 0.363892 SE -20 + 0.075536 CE -20
2 e 2 e
e 2 _
- 0.220475 SE +20 0.012456 CE +26 ) (1;) A
2 e 2 e
+ (—3.427811 SE 20 +6 12.21336 C]-3- -20 40
1 s e 1 s e
+ 0.364256 SE +20 -0 + 1.32375 CE +20 -0
1 s e 1 s e
- 0.616966 SE - 2,143755 CE -
1 e 1 e
e —
+ 0.014746 SE 0 " 0.095293 CE +0 >E A1
1l e 1l e
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+

+

+

(1.379874 S= + 7.636506 C—

B_~20 +0 B_-20 +6
s e

2 s e 2

0.169184 SE +26 -6 + 4.897457 C-E +20 -8
2 s e 2 s e

0.151114 SE - 0.486513 CE -6
2 e 2 e

+6 B_+

0.081021 S-— ~ 0.337515 C— g A
B 6 m
2 e 2 e

4B

-0.355317 S = + 0.79958 C —
1 4Bl

0.734842 SZE 2B

+ 2,918539 C -—> A
1 1

-10.03061 S,— —- + 1.82702 C_= =
( 3B1 B2 3B1 B2

4.207251 S_,- = + 8.173185 C_= =
3B1+B2 3B1+B2

4.694077 S— = + 10.41624 C~ =
B, -B, B, B,

..-3—.
1.223805 S-ﬁl_'_ﬁ-z + 15.83876 Cl—3-1+-ﬁ2> A1A2

2B 2B

<—48.5735 S,— + 32.24146 C_=
1 1

23,95198 Sz(§1+§2) + 20.41893 C2(§i+§z)

2,841673 Sz-ﬁz + 3.439699 Cz-ﬁz
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-2 —2
- 34,77553 S, — — . - 17.13252 C_ — =— ) Ny
"~ "2(B;-B,) 2(B;-B,)/ "1 "2
+ [-56.42697 s—= _— - 10.34366 C— _—
< B1+3B2 B1+3B2
- 94.4205 S— — + 47.20834 C= —
B, "B, B, =By
- 64.41205 S~ — + 122.7702 C— — | A. AS
: B1+B2 : B1+B2 172

=42, - - 63.64 -
+ ( 42.08241 8432 63.64653 C482

=4
+ 9.753145 Szﬁé + 135.4698 02§2> A2

L
3

+ 0.170889 C

W3 = (9.427447

S — —_
2(B1+es) 2(B1+Gs)

-2
+ 0.109831 SZQS + 0.395711 C295> A1

- - + 3.421687 C= —
B_-2 B_-2
B1+ 5 GS B, + 9 es

+ (g.28391 S
1

+ 1.676418 S = + 3.170164 Cz =
B1—B2-29s Bl—B2—29S

+ 1.362291 SE B +26 + 2.45448 CE -B_+20
172 s 172 s

+ 2.060082 Sg = .o + 1.370538 Cp & .o > 1%
1 2 s 1 2 S

+

+ (0.538896 5= - 9.854652 C=
By By
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0.202583 SE +46 ~:0;235259:C§ +40
1 s 1 s

3.411282 Sﬁ -ap 3.8675"C§ ~40
1 s . 1 s

‘0.046696 SE +0 --0.3274896 CE +0
1 's . 1 s

0.271379 SE Y- 1.264127 CE +

1 s 1 Zes

0.340793 S§ -28 + 1.512917 CE -26 ) A1
1 s 1 s

-13.53088 S= + 35.12306 C=
B2 BZ

1.95702 SE vap 2.987282 CE +

2 s 2 49s

2.815152 S; o - 6.72634 Cf _ 4
2 s 2 s

0.1909372 SE w6 0.950122 CE )
2 s 2 s

1.018833 S§ o " 0.997301 CE -0
2 s 2 s

0.096495 SE +20 + 3.81702 CE 420
2 s 2 S

0.896547 S
BZ—

20 + 3.669539 CE -20 ) AZ
s 2 s

(1.876573 SZ(E +6 ) + 3.825366 CZ(E +0 )=
2 s 2 7s
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2.207245 S_ =
2(32-95)

1.52836 S2

e
s

(T178.5942 S35 -20
2 s

+ 4.67143 C
.582391 A
+ 3.5823 Czes)

- 59.58496 C

2(B2—Gs)

2
2

3B2—29s

44 ,24309 SBE +26 + 219.6777 CSE +26
2 s 2 s
99.69841 SE +20 -~ 189.6082 CE +260
2 s 2 s
' —3
53.77713 SB -26 + 102.0551 CE -28 > A2
2 s 2 s
(95.50406 SE —ZE 426 - 72.9011 CE —2§ +20
1 2 s 1 2 s
11.67558 SE +2§ -20 - 96.85298 CE +2§ -55
1 2 s 1 2 s
50.12306 SE +20 - 113.4417 CE +26
1 s 1 s
257.5142 S5 _,, - 234.9083 Cp
1 s i S
153.5865 S— - - 32.67642 C= -
B1—2B2 29S B1 2B2 295
4.564745 S= .= + 120.0289 Cz . .% A A2
‘ B,+2B,_+26 . B, +2B_+26 172
1 2 s 1 2 s
(?8.98198 SZ§ +B._-26 - 86.27562 CZE +B -26
1 72 s 1 2 .s
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2B1—B2-29S

162.1803 S - 10.23446 C

2B1—B2—26S

128.6843 S§'+29 - 5.666478 CE +20
2 s 2 s

92.26918 SE -20 31.6273 CE _

2 s 2 295

10.47955 SZE B +20 46.36234 CZE B +20
1 72 s 1 2 s

A2 A

+ 6.775098 CZE +B.+20 > 1 Ag
1 2 s

2.130544 SZE +B. 420
1 72 s

<12.64884 SSE 20 13.46989 SSE -26
1 s 1 s

0.5897111 S3§1+265 - 3.286213 03§1+295

22.79636 S— + 0.137468 C—
B, + B,+

1 29S 1 29s
-3
12.80432 SB _20 20.0037 CB —20 > A1
1 s 1 s
<1.026707 S= = 6.885755 C=
B B
1 1
1.980824 Ssﬁ ~ 3.694381 C3§
1 1
-5
0.2066327 S_— =~ 6.996066 C_=— ] A
5B 5B 1
1 1
33.099 S, — — =~-74.70222 C = =
( 4B, -B, 4B, -B,
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1

3J058436 S4§ = ~ 49.44173 C -

1+B2 4B1+B2
14.97404 §5,= = - 57.32628 Com.5
s 2
34.44356 8§~ — - 44.65163 C_—~ =
2B, -B, 2B, -B,
6.59136 S= - 65.21121 C= | AY &
B, ; By 172

122.2825 S= - 331.9351 C
B1 Bl

53.84464 S~ _—= - 87.91312 C= _—
B1+2B2 B1+2B2

198.9554 S= _~ + 134.0697 C~ _~
B1—2B2 B1—232

168.1948 S3Ei ~ 435.9854 Csﬁi

181.7902 S_- = =~ 60.3284 C_— =
351—2B2 381-2B2

=3 2
78.25591 S3Bl+2§é - 6.245646 C331+2§é) A1 A2

426.8296 S— -~ 1120.0283 C~
B2 B2

363.363 S,z ,— + 374.5361 C,— =
2B1 382 ZBl 3B2

185.7916 Saﬁé + 335.7813 C3§é

122



712.1592

110.779 S =

151.9454

(—1768.28 SE

463.7324
1944.027
417 .3494
2069.625
<3861 .27
2636 .735

1724.758

5B2

+ 652.1155 C

S_.= + 1252.506 C_= > Ks
2

5B

123

S —_— p— —_— _—
2B1+3B 2B1+3B2
= - 1080.308 C_ = =
2B1+B2 2B1+B2
s——+1oo4452c——>K2K3
2B1—B2 2B1—B2 1 2
- 595.311 CE
1 1
S— = 495.5015 C= -
B1—4B2 B1—4B2
S— - 1671.95 C— =
B1+4B2 B1+4B2
S— — =~ 1894.879 C—= -
B1+2B2 B1+2B2
— —4
S— — 2190.171 C— — ) A A
B1 2B2 B1 2B2 1 2
S— -~ 3638.23 C—
B2 B2
S,— =-1952.747 C_—
3B2 3B2
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